Surveys in Geophysics

, Volume 11, Issue 2–3, pp 231–270 | Cite as

Inversion of electromagnetic data: An overview of new techniques

  • Doug Oldenburg


This paper explores some of the newer techniques for acquiring and inverting electromagnetic data. Attention is confined primarily to the 2d magnetotelluric (MT) problem but the inverse methods are applicable to all areas of EM induction. The basis of the EMAP technique of Bostick is presented along with examples to illustrate the efficacy of that method in structural imaging and in overcoming the deleterious effects of near-surface distortions of the electric field. Reflectivity imaging methods and the application of seismic migration techniques to EM problems are also explored as imaging tools. Two new approaches to the solution of the inverse problem are presented. The AIM (Approximate Inverse Mapping) inversion of Oldenburg and Ellis uses a new way to estimate a perturbation in an iterative solution which does not involve linearization of the equations. The RRI (Rapid Relaxation Inverse) of Smith and Booker shows how approximate Fréchet derivatives and sequences of 1d inversions can be used to develop a practical inversion algorithm. The overview is structured to provide insight about the latest inversion techniques and also to touch upon most areas of the inverse problem that must be considered to carry out a practical inversion. These include model parameterization, methods of calculating first order sensitivities, and methods for setting up a linearized inversion.


Inverse Problem Structural Imaging Iterative Solution Inverse Method Inversion Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Behie, A. and Vinsome, P. K. W.: 1982, ‘Block Iterative Methods for Fully Implicit Reservoir Simulation’,Soc. Pet. Eng. J. 658–668.Google Scholar
  2. Berdichevsky, M. N. and Dmitriev, V. I.: 1976, ‘Basic Principle of Interpretation of Magnetotelluric Sounding Curves. in A. Adam (ed.),Geoelectric and Geothermal Studies, KAPG Geophysics Monogr., Akademiai Kiado, Budapest, pp. 165–211.Google Scholar
  3. Berdichevsky, M. N. and Zhdanov, M. S.: 1984,Advanced Theory of Deep Geomagnetic Sounding, Elsevier, 408 pp.Google Scholar
  4. Bostick, F. X. Jr.:Electromagnetic Array Profiling (Expanded Abstract), Soc. Expl. Geophys. 56th Ann. Mtg., Houston, TX.Google Scholar
  5. Cerv, V. and Pek, J.: 1981, ‘Numerical Solution of the Two-Dimensional Inverse Geomagnetic Induction Problem’,Studia geoph. et geod. 25, 69–80.Google Scholar
  6. Chave, A. D. and Brooker, J. R.: 1987, ‘Electromagnetic Induction Studies’,Rev. Geophys. 25, 989–1003.Google Scholar
  7. Claerbout, J. F.: 1976,Fundamentals of Geophysical Data Processing, McGraw-Hill Book Co.Google Scholar
  8. Constable, S. C., Parker, R. L. and Constable, C. G.: 1987, ‘Occam's Inversion: A Practical Algorithm for Generating Smooth Models from Electromagnetic Sounding Data’,Geophys. 52, 289–300.Google Scholar
  9. Dosso, E. E. and Oldenburg, D. W.: 1989, ‘Linear and Nonlinear Appraisal Using Extremal Models of Bounded Variation’,Geophys. J. Int. 99, 483–495.Google Scholar
  10. Flores, C., Kurtz, R. D., and DeLaurier, J.: 1985, ‘Magnetotelluric Exploration in the Meager Mountain Geothermal Area’,Canada, Acta Geodaet Geophys. et. Montanist Hung. 20, 165–171.Google Scholar
  11. Franklin, J. N.: 1970, ‘Well-Posed Stochastic Extensions of Ill-Posed Linear Problems’,J. Math. Anal. Appl. 31, 682–716.Google Scholar
  12. Gill, P. E., Murray, W., and Wright, M. H.: 1981,Practical Optimization, Academic Press.Google Scholar
  13. Glenn, W. E., Ryu, J., Ward, S. H., Peeples, W. J., and Phillips, R. J.: 1973, ‘The Inversion of Vertical Magnetic Dipole Sounding Data’,Geophys. 38, 1109–1129.Google Scholar
  14. Goldenberg, S., Loewenthal, D., and Rotstein, Y.: 1982, ‘An Improved Algorithm for Magnetotelluric and Direct Current Data Interpretation’,J. Geophys. 50, 151–158.Google Scholar
  15. Gomez-Trevino, E.: 1987, ‘Nonlinear Integral Equations for Electromagnetic Inverse Problems’,Geophys. 52, 1297–1302.Google Scholar
  16. Goupillaud, P. L.: 1961, ‘An Approach to Inverse Filtering of Near Surface Layer Effects from Seismic Records’,Geophysics 26, 754–760.Google Scholar
  17. Hermance, J. F.: 1983, ‘Electromagnetic Induction Studies’,Rev. Geophysics 21, 652–664.Google Scholar
  18. Hohmann, G. W. and Raiche, A. P.: 1988, ‘Inversion of Controlled Source Electromagnetic Data’, in M. N. Nabighian (ed.),Electromagnetic Methods in Applied Geophysics, Vol. 1, Theory, Soc. Expl. Geophys.Google Scholar
  19. Jackson, D. D.: 1972, ‘Interpretation of Inaccurate, Insufficient, and Inconsistent Data’,Geophys. J. R. Astr. Soc. 28, 97–109.Google Scholar
  20. Jones, A. G., Kurtz, R. D., Oldenburg, D. W., Boerner, D. E. and Ellis, R. G.: 1988, ‘Magnetotelluric Observations along the LITHOPROBE Southeastern Canadian Cordilleran Transect’,Geophys. Res. Let. 15, 677–680.Google Scholar
  21. Jupp, D. L. B. and Vozoff, K.: 1974, ‘Stable Iterative Methods for Inversion of Geophysical Data’,Geophys. J. R. Astr. Soc. 42, 957–976.Google Scholar
  22. Jupp, D. L. B. and Vozoff, K.: 1976, ‘Two-Dimensional Magnetotelluric Inversion’,Geophys. J. R. Astr. Soc. 50, 333–352.Google Scholar
  23. Ku, C. C.: 1976, ‘Inverse Magnetotelluric Problems’,Geophysics 41, 276–286.Google Scholar
  24. Kunetz, G.: 1972, ‘Processing and Interpretation of Magnetotelluric Soundings’,Geophysics 37, 1005–1021.Google Scholar
  25. Kurtz, R. D., DeLaurier, J. M., and Gupta, J. C.: 1986, ‘A Magnetotelluric Sounding Across Vancouver Island Detects the Subducting Juan de Fuca Plate’,Nature 321, 596.Google Scholar
  26. Lanczos, C.: 1961,Linear Differential Operators, Van Nostrand Company Ltd.Google Scholar
  27. Lee, S., McMechan, G. A., and Aiken, G. L. V.: 1987, ‘Phase Field Imaging of Electromagnetic Data’,Geophysics 52, 678–693.Google Scholar
  28. Levy, S., Oldenburg, D., and Wang, J.: 1988, ‘Subsurface Imaging Using Magnetotelluric Data’,Geophysics 53, 104–117.Google Scholar
  29. Madden, T. R.: 1973,Instruction Manual for EDCDC and EMUVA (EMCAL), Exploration Aids Inc., Needham, Mass.Google Scholar
  30. Mackie, R. L., Bennett, B. R., and Madden, T. R.: 1988, ‘Long Period Magnetotelluric Measurements near the Central California Coast: A Land Locked View of the Conductivity Structure Under the Pacific Ocean’, (submitted toGeophysical Journal).Google Scholar
  31. McGillivray, P. R. and Oldenburg, D. W.: 1990, ‘Methods for Calculating Fréchet Derivatives and Sensitivities for the Nonlinear Inverse Problem—A Comparative Study’, accepted inGeophys. Prospecting.Google Scholar
  32. Marquardt, D. W.: 1963, ‘An Algorithm for Least Squares Estimation of Non-Linear Parameters’,J. SIAM 11, 431–441.Google Scholar
  33. Menke, W.: 1984,Geophysical Data Analysis: Discrete Inverse Theory, Academic Press.Google Scholar
  34. Morse, P. W. and Feshbach, H.: 1953,Methods of Theoretical Physics, McGraw-Hill.Google Scholar
  35. Neumann, G. A. and Hermance, J. F.: 1987,A Comparison of Four Generalized Inverse Algorithms Using Synthetic Data, Paper at IUGG meeting, Vancouver, Canada.Google Scholar
  36. Oldenburg, D. W.: 1978, ‘One-Dimensional Inversion of Natural Source Magnetotelluric Observations’,Geophysics 44, 1218–1244.Google Scholar
  37. Oldenburg, D. W.: 1983, ‘Funnel Functions in Linear and Nonlinear Appraisal’,J. Geop. Res. 88, 7387–7398.Google Scholar
  38. Oldenburg, D. W. and Ellis, R. G.: 1990, ‘Inversion of Geophysical Data Using an Approximate Inverse Mapping’, submitted toGeophysical J. Int. Google Scholar
  39. Park, S. K.: 1987,Inversion of Magnetotelluric Data for Multi-Dimensional Structures, IGPP Report, 87/6, University of California, Riverside.Google Scholar
  40. Parker, R. L.: 1980, ‘The Inverse Problem of Electromagnetic Induction: Existence and Construction of Solutions Based upon Incomplete Data’,J. Geophys. Res. 85, 4421–4428.Google Scholar
  41. Pek, J.: 1987, ‘Numerical Inversion of 2-D MT Data by Models with Variable Geometry’,Phys. Earth and Planet Inter. 45, 193–203.Google Scholar
  42. Ranganayaki, R. P.: 1984, ‘An Interpretive Analysis of Magnetotelluric Data’,Geophysics 49, 1730–1748.Google Scholar
  43. Roach, G. F.: 1982,Green's Functions, Cambridge University Press.Google Scholar
  44. Rodi, W. L.: 1976, ‘A Technique for Improving the Accuracy of Finite Element Solutions for MT Data’,Geophys. J. R. Astr. Soc. 44, 483–506.Google Scholar
  45. Rodi, W. L., Swanger, H. J., and Minster, J. B.: 1983,ESP/MT: An Interactive System for Two-Dimensional Magnetotelluric Interpretation, SEG Extended Abstract, p. 151.Google Scholar
  46. Smith, J. T. and Booker, J. R.: 1988, ‘Magnetotelluric Inversion for Minimum Structure’,Geophysics 53, 1565–1576.Google Scholar
  47. Smith, J. T. and Booker, J. R.: 1988b,Two and Three Dimensional Inversion of Magnetotelluric Data, (presented at Ensenada workshop, June, 1988).Google Scholar
  48. Smith, J. T.: 1988, ‘Rapid Inversion of Multi-Dimensional Magnetotelluric Data’, Ph.D. thesis, Geophysics Program, University of Washington.Google Scholar
  49. Stratton, J. A.: 1941,Electromagnetic Theory, McGraw-Hill, 615 pp.Google Scholar
  50. Szaraniec, E.: 1976, ‘Fundamental Functions for Horizontally Stratified Earth’,Geop. Prosp. 24, 528–548.Google Scholar
  51. Tarantola, A.: 1987,Inverse Problem Theory, Elsevier, 613 pp.Google Scholar
  52. Tarantola, A. and Valette, B.: 1982, ‘Generalized Nonlinear Problems Solved Using the Least-Squares Criterion’,Rev. Geophys. Space Phys. 20, 219–232.Google Scholar
  53. Torres-Verdin, C.: 1985, ‘Implications of the Born Approximation for the Magnetotelluric Problem in Three-Dimensional Environments’, MSc. Thesis, University of Texas at Austin, TX.Google Scholar
  54. Torres-Verdin, C. and Bostick, F. X. jr.: 1988, ‘Principles of Spatial Surface Electric Field Filtering in Magnetotellurics: The EMAP Technique, (submitted toGeophysics).Google Scholar
  55. Travis, B. J. and Chave, A. D.: 1986,A Moving Finite Element Model for 2-D Magnetotelluric Analysis, 8th workshop on Electromagnetic induction in the earth and moon, University of Neuchatel.Google Scholar
  56. Varentsov, IV. M.: 1983, ‘Modern Trends in the Solution of Forward and Inverse 3-D Electromagnetic Induction Problems’,Geophys. Surv. 6, 55–78.Google Scholar
  57. Velikhov, Y. P., Zhdanov, M. S., and Frenkel, M. A.: 1987, ‘Interpretation of MHD-Sounding Data from the Kola Peninsula by the Electromagnetic Migration Method’,Phys. Earth Planet Int. 45, 149–160.Google Scholar
  58. Vozoff, K.: 1986,Magnetotelluric Methods, Geophysical Reprint series No. 5, Soc. Expl. Geophys.Google Scholar
  59. Wannamaker, P. E., Hohmann, G. W., and Ward, S. H.: 1984, ‘Magnetotelluric Responses of Three-Dimensional Bodies in Layered Earths’,Geophysics 49, 1517–1533.Google Scholar
  60. Wannamaker, P. E., Stodt, J. A., and Rijo, L.: 1985,PW2D-Finite Element Program for Two-Dimensional Earth Resistivity Structure: User Documentation, University of Utah, Res. Inst. Rep. ESL-158.Google Scholar
  61. Ward, S. H. and Hohmann, G. W.: 1988, ‘Electromagnetic Theory for Geophysical Applications’, in Nabighian, M. N. (ed.),Electromagnetic Methods in Applied Geophysics, Soc. Expl. Geophys.Google Scholar
  62. Weidelt, P.: 1975, ‘Inversion of Two-Dimensional Conductivity Structures’,Phys. Earth and Planet Int. 10, 282–291.Google Scholar
  63. Whittall, K. P. and Oldenburg, D. W.: 1990, ‘Inversion of Magnetotelluric Data over a One-Dimensional Earth’, (to be published in an SEG monograph on magnetotellurics edited by P. Wannamaker).Google Scholar
  64. Zhdanov, M. S.: 1987, ‘Application of Space Analysis of Electromagnetic Fields to Investigation of the Geoelectrical Structure of the Earth’,Pageoph 125, 483–497.Google Scholar
  65. Zhdanov, M. S. and Golubev, N. G.: 1983, ‘Use of Finite Functions Method for the Solution of the 2-D Inverse Problem’,J. Geomag, Geoelectr. 35, 707–722.Google Scholar
  66. Zhdanov, M. S. and Frenkel, M. A.: 1982,The Solution of the Inverse Problems on the Basis of Analytical Continuation of the Transient Electromagnetic Field in Reverse Time, presented at the 6th Workshop on EM-induction in the earth and moon, University of Victoria.Google Scholar
  67. Zhdanov, M. S. and Frenkel, M. A.: 1983, ‘The Solution of the Inverse Problems on the Basis of Analytical Continuation of the Transient Electromagnetic Field in Reverse Time’,J. Geomag. Geoelectr. 35, 747–765.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Doug Oldenburg
    • 1
  1. 1.Dept. of Geophysics and AstronomyU.B.C. VancouverCanada

Personalised recommendations