Advertisement

Journal of Protein Chemistry

, Volume 13, Issue 3, pp 277–281 | Cite as

Co2+ binding to α-lactalbumin

  • Eugene A. Permyakov
  • Lawrence J. Berliner
Article

Abstract

α-Lactalbumin possesses multiple Zn2+ binding sites, with the strongest site having an affinity constant of 5×105 M−1 [Permyakovet al. (1991),J. Protein Chem.100, 577]. The binding of zinc at secondary sites is accompanied by destabilization of the protein structure and progressive protein aggregation. This pronounced destabilization is reflected in a shift of the thermal denaturation transition temperature by more than 40°. The present work examines Co2+ binding to bovineα-lactalbumin, where for this analog of Zn2+, multiple binding sites were also found from spectrofluorimetric titrations. The strong site Co2+ binding constant was 1.3×106 M−1. However, in contrast to Zn2+ binding, Co2+ does not cause protein aggregation nor any significant thermal destabilization of the protein. Fluroescence energy transfer measurements between Tb3+ in the strong calcium site to Co2+ in the strong Zn2+ site gave a distance in the range of 14–18 Å, which was in excellent agreement with recent crystallographic data for humanα-lactalbumin [Renet al. (1993), J. Biol. Chem.268, 19292–19298] However, the X-ray structure did not identify the additional zinc sites found from earlier solution studies, presumably due to restrictive crystal packing interactions. The results from the current work confirm that the strong cobalt (zinc) site in solution is the same zinc site elucidated by X-ray crystallography.

Key words

Fluorescence energy transfer zinc α-lactalbumin terbium cobalt calcium calcium-zinc distance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, J. E. (1981). InSpectroscopy in Biochemistry, Vol. I, CRC Press, Boca Raton, Florida, p. 155.Google Scholar
  2. Berliner, L. J., Koga, K., Nishikawa, H., and Scheffler, J. E. (1987).Biochemistry 26, 5769–5774.Google Scholar
  3. Farris, F. J., Weber, G., Chiang, C. C., and Paul, I. C. (1978).J. Am. Chem. Soc. 100, 4469–4474.Google Scholar
  4. Hiraoka, Y., Segawa, T., Kuwajima, K., Sugai, S., and Murai, N. (1980).Biochem. Biophys. Res. Commun. 95, 1098–1104.Google Scholar
  5. Holmquist, B. (1980).Adv. Inorg. Biochem. 2, 75–93.Google Scholar
  6. Horrocks, W. D., Holmquist, B., and Vallee, B. L. (1975).Proc. Natl. Acad. Sci. USA 72, 4764–4767.Google Scholar
  7. Lakowicz, J. R. (1983).Principles of Fluorescence Spectroscopy, Plenum Press, New York, pp. 305–309.Google Scholar
  8. Murakami, K., and Berliner, L. J. (1983).Biochemistry 22, 3370–3374.Google Scholar
  9. Musci, G., and Berliner, L. J. (1985).Biochemistry 24, 3852–3856.Google Scholar
  10. Musci, G., and Berliner, L. J. (1986).Biochemistry,25, 4887–4889.Google Scholar
  11. Permyakov, E. A. (1993).Luminescent Spectroscopy of Proteins, CRC Press, Boca Raton, Florida.Google Scholar
  12. Permyakov, E. A., Kalinichenko, L. P., Morozova, L. A., Yarmolenko, V. V., and Burstein, E. A. (1981).Biochem. Biophys. Res. Commun. 102, 1–7.Google Scholar
  13. Permyakov, E. A., Morozova, L. A., and Burstein, E. A. (1985).Biophys. Chem. 21, 21–31.Google Scholar
  14. Permyakov, E. A., Morozova, L. A., Kalinichenko, L. P., and Derezhkov, V. Y. (1988).Biophys. Chem. 32, 37–42.Google Scholar
  15. Permyakov, E. A., Shnyrov, V. L., Kalinichenko, L. P., Kuchar, A., Reyzer, I. L., and Berliner, L. J. (1991).J. Protein Chem. 10, 577–584.Google Scholar
  16. Reich, J. A., Wangerman, G., Falk, M., and Rohde, K. (1972).Eur. J. Biochem. 26, 368–376.Google Scholar
  17. Ren, J., Stuart, D. L., and Acharya, K. R. (1993).J. Biol. Chem. 268, 19292–19298.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Eugene A. Permyakov
    • 1
  • Lawrence J. Berliner
    • 1
  1. 1.Department of ChemistryOhio State UniversityColumbus

Personalised recommendations