Journal of Protein Chemistry

, Volume 13, Issue 6, pp 569–584 | Cite as

Models of the three-dimensional structures of echidna, horse, and pigeon lysozymes: Calcium-binding lysozymes and their relationship with α-lactalbumins

  • K. Ravi Acharya
  • David I. Stuart
  • David C. Phillips
  • Hugh A. McKenzie
  • Carmel G. Teahan


Similarities in amino acid sequences, three-dimensional structures, and the exon-intron patterns of their genes have indicated thatc-type lysozymes andα-lactalbumins are homologous proteins, i.e., descended by divergent evolution from a common ancestor. Like theα-lactalbumins, echidna milk, horse milk, and pigeon eggwhite lysozymes all bind Ca(II). Models of their three-dimensional structures, based on their amino acid sequences and the known crystal structures of domestic hen eggwhite and human lysozymes and baboon and humanα-lactalbumins, have been built. The several structures have been compared and their relationships discussed.

Key words

Calcium-binding lysozyme α-lactalbumin three-dimensional structure evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acharya, K. R., Stuart, D. L., Walker, N. P. C., Lewis, M., and Phillips, D. C. (1989).J. Mol. Biol. 208, 99–127.Google Scholar
  2. Acharya, K. R., Stuart, D. I., Phillips, D. C., and Scheraga, H. A. (1990).J. Protein Chem. 9, 549–563.Google Scholar
  3. Acharya, K. R., Ren, J., Stuart, D. I., Phillips, D. C., and Fenna, R. E. (1991).J. Mol. Biol. 221, 571–581.Google Scholar
  4. Aqvist, J., van Gunsteren, W. F., Leijonmarck, M., and Tapia, O. (1985).J. Mol. Biol. 183, 461–477.Google Scholar
  5. Artymiuk, P. J., and Blake, C. C. F. (1981).J. Mol. Biol. 152, 737–762.Google Scholar
  6. Benton, M. J. (1990).J. Mol. Evol. 30, 409–424.Google Scholar
  7. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., and Tasumi, M. (1977).J. Mol. Biol. 112, 535–542.Google Scholar
  8. Blake, C. C. F., Koenig, D. F., Mair, G. A., North, A. C. T., Phillips, D. C., and Sarma, V. R. (1965).Nature 206, 757–761.Google Scholar
  9. Blake, C. C. F., Mair, G. A., North, A. C. T., Phillips, D. C., and Sarma, V. R. (1967a).Proc. R. Soc. Lond. B 167, 365–377.Google Scholar
  10. Blake, C. C. F., Johnson, L. N., Mair, G. A., North, A. C. T., Phillips, D. C., and Sarma, V. R. (1967b).Proc. R. Soc. Lond. B 167, 378–388.Google Scholar
  11. Brew, K., and Campbell, P. N. (1967).Biochem. J. 102, 258–264.Google Scholar
  12. Brew, K., Vanaman, T. C., and Hill, R. L. (1968).Proc. Natl. Acad. Sci. USA 59, 491–497.Google Scholar
  13. Brew, K., Castellino, F. J., Vanaman, T. C., and Hill, R. L. (1970).J. Biol. Chem. 245, 4570–4582.Google Scholar
  14. Brodbeck, U., and Ebner, K. E. (1966).J. Biol. Chem. 241, 762–764.Google Scholar
  15. Brown, J. R. (1964).Biochem. J. 92, 13P.Google Scholar
  16. Browne, W. J., North, A. C. T., and Phillips, D. C. (1969).J. Mol. Biol. 42, 65–86.Google Scholar
  17. Canfield, R. E. (1963).J. Biol. Chem. 238, 2698–2707.Google Scholar
  18. Canfield, R. E., and Liu, A. K. (1965).J. Biol. Chem. 240, 1997–2002.Google Scholar
  19. Canfield, R. E., Kammerman, S., Sobel, J. H., and Morgan, F. J. (1971).Nature New Biol. 232, 16–17.Google Scholar
  20. Collet, C., Joseph, R., and Nicholas, K. (1990).Reprod. Fertil. Dev. 2, 693–701.Google Scholar
  21. Dautigny, A., Prager, E. M., Pham-Dinh, D., Jollès, J., Pakdel, F., Grindle, B., and Jollès, P. (1991).J. Mol. Evol. 32, 187–198.Google Scholar
  22. Farrell, H. M. Jr., and Thompson, M. P. (1990).Protoplasma 159, 157–167.Google Scholar
  23. Findlay, J. B. C., and Brew, K. (1972).Eur. J. Biochem. 27, 65–86.Google Scholar
  24. Gardiner, B. G. (1982).Zool. J. Linn. Soc. 74, 207–232.Google Scholar
  25. Godovac-Zimmermann, J., Conti, A., and Naptolitano, L. (1988).Biol. Chem. Hoppe-Seyler 369, 1109–1115.Google Scholar
  26. Goodman, M., Miyamoto, M. M., and Czelusniak, J. (1987). InMolecules and Morphology in Evolution: Conflict or Compormise? (Patterson, C., ed.), Cambridge University Press, Cambridge, pp. 141–169.Google Scholar
  27. Grütter, M. G., Weaver, L. H., and Matthews, B. W. (1983).Nature 303, 828–831.Google Scholar
  28. Hall, L., and Campbell, P. N. (1986).Essays Biochem. 22, 1–26.Google Scholar
  29. Hall, L., Craig, R. K., Edbrooke, M. R., and Campbell, P. N. (1982).Nucleic Acids Res. 10, 3503–3515.Google Scholar
  30. Handoll, H. H. G. (1985). D. Phil. Thesis, University of Oxford.Google Scholar
  31. Hermans, J., and McQueen, J. E., Jr. (1974).Acta Crystallogr. A 30, 730–739.Google Scholar
  32. Hiraoka, Y., Segawa, T., Kuwajima, K., Sugai, S., and Murai, N. (1980).Biochem. Biophys. Res. Commun. 95, 1098–1104.Google Scholar
  33. Holpert, M., and Cooper, T. G. (1990).J. Reprod. Fertil. 90, 503–514.Google Scholar
  34. Hopp, T. P., and Woods, K. R. (1979).Biochemistry 18, 5182–5199.Google Scholar
  35. Ibrahimi, I. M., Prager, E. M., White, T. J., and Wilson, A. C. (1979).Biochemistry 18, 2736–2744.Google Scholar
  36. Inaka, K., Kuroki, R., Kikuchi, M., and Matsushima, M. (1991).J. Biol. Chem. 266, 20666–20671.Google Scholar
  37. Irwin, D. M., and Wilson, A. C. (1990).J. Biol. Chem. 265, 4944–4952.Google Scholar
  38. Ito, Y., Yamada, H., Nakamura, M., Yoshikawa, A., Ueda, T., and Imoto, T. (1993).Eur. J. Biochem. 213, 649–658.Google Scholar
  39. Jollès, J., and Jollès, P. (1971).Helv. Chim. Acta 54, 2668–2675.Google Scholar
  40. Jollès, J., Jauregui-Adell, J., Bernier, I., and Jollès, P. (1963).Biochim. Biophys. Acta 76, 668–689.Google Scholar
  41. Jollès, J., van Leemputten, E., Mouton, A., and Jollès, P. (1972).Biochim. Biophys. Acta 257, 497–510.Google Scholar
  42. Jollès, J., Prager, E. M., Alnemri, E. S., Jollès, P., Ibrahimi, I. M., and Wilson, A. C. (1990).J. Mol. Evol. 30, 370–382.Google Scholar
  43. Jones, T. A. (1985). InMethods in Enzymology, Vol. 115 (Wyckoff, H. W., Hirs, C. H. W., and Timasheff, S. N., eds.), Academic Press, Orlando, Florida, pp. 157–171.Google Scholar
  44. Kaminogawa, S., McKenzie, H. A., and Shaw, D. C. (1984).Biochem. Int. 9, 539–546.Google Scholar
  45. Kronman, M. J. (1989).CRC Crit. Rev. Biochem. Mol. Biol. 24, 565–667.Google Scholar
  46. Kuroki, R., Taniyama, Y., Nakamura, H., Kikuchi, M., and Ikehara, M. (1989).Proc. Natl. Acad. Sci. USA 86, 6903–6907.Google Scholar
  47. Linse, S., Brodin, P., Johansson, C., Thulin, E., Grundstrom, T., and Forsen, S. (1988).Nature 335, 651–652.Google Scholar
  48. Marquart, M., Deisenhofer, J., Huber, R., and Palm, W. (1980).J. Mol. Biol. 141, 369–391.Google Scholar
  49. Martin, A. C. R., Cheetham, J. C., and Rees, A. R. (1989).Proc. Natl. Acad. Sci. USA 86, 9268–9272.Google Scholar
  50. McKenna, M. C. (1987). InMolecules and Morphology in Evolution: Conflict or Compromise? (Patterson, C., ed.), Cambridge University Press, Cambridge, pp. 55–93.Google Scholar
  51. McKenzie, H. A., and Shaw, D. C. (1985).Biochem. Int. 10, 23–31.Google Scholar
  52. McKenzie, H. A., and White, F. H., Jr. (1991).Advan. Protein Chem. 41, 173–315.Google Scholar
  53. Moore, A., Hall, L., and Hamilton, D. W. (1990).Biol. Reprod. 43, 497–506.Google Scholar
  54. Musci, G., and Berliner, L. J. (1985).Biochemistry 24, 6945–6948.Google Scholar
  55. Nitta, K., and Sugai, S. (1989).Eur. J. Biochem. 182, 111–118.Google Scholar
  56. Nitta, K., Tsuge, H., Sugai, S. D., and Shimazaki, K. (1987).FEBS Lett. 223, 405–408.Google Scholar
  57. Nitta, K., Tsuge, H., Shimazaki, K., and Sugai, S. D. (1988).Biol. Chem. Hoppe-Seyler 369, 671–675.Google Scholar
  58. Phillips, D. C. (1966).Sci. Am. 215(5), 78–90.Google Scholar
  59. Phillips, D. C., Sternberg, M. J. E., and Sutton, B. J. (1983). InEvolution from Molecules to Man (Bendall, D. S., ed.), Cambridge University Press, Cambridge, pp. 145–173.Google Scholar
  60. Phillips, D. C., Acharya, K. R., Handoll, H. H. G., and Stuart, D. I. (1987).Biochem. Soc. Trans. 15, 737–744.Google Scholar
  61. Prager, E. M., and Wilson, A. C. (1988).J. Mol. Evol. 27, 326–335.Google Scholar
  62. Rao, K. R., and Brew, K. (1989).Biochem. Biophys. Res. Commun. 163, 1390–1396.Google Scholar
  63. Rao, S. T., Hogle, J., and Sundaralingam, M. (1983).Acta Crystallogr. C 39, 237–240.Google Scholar
  64. Rodriguez, R., Mendez-Arias, L., Gonzales de Bruitrago, C., and Gavilanes, J. G. (1985).Biochem. Int. 9, 539–546.Google Scholar
  65. Rodriguez, R., Menedez-Arias, L., Gonzales de Bruitrago, G., and Gavilanes, J. G. (1987).Comp. Biochem. Physiol. 88B, 791–796.Google Scholar
  66. Sali, A., and Blundell, T. L. (1990).J. Mol. Biol. 212, 403–428.Google Scholar
  67. Salton, M. R. J. (1964).The Bacterial Cell Wall, Elsevier, Amsterdam.Google Scholar
  68. Shaw, D. C., Messer, M., Scrivener, A. M., Nicholas, K. R., and Griffiths, M. (1993).Biochim. Biophys. Acta 1161, 177–186.Google Scholar
  69. Shewale, J. G., Sinha, S. K., and Brew, K. (1984).J. Biol. Chem. 259, 4947–4956.Google Scholar
  70. Sibley, C. G., and Ahlquist, J. E. (1990). InThe Phylogeny and Classification of Birds, a Study of Molecular Evolution, Yale University Press, New Haven, Connecticut.Google Scholar
  71. Stuart, D. I., Acharya, K. R., Walker, N. P. C., Smith, S. G., Lewis, M. and Phillips, D. C. (1986).Nature 324, 84–87.Google Scholar
  72. Teahan, C. G., McKenzie, H. A., Shaw, D. C., and Griffiths, M. (1991).Biochem. Int. 24, 85–95.Google Scholar
  73. Thompson, M. P., Groves, M. L., Brower, D. P., Farrell, H. M., Jenness, R., and Kotts, C. E. (1988).Biochem. Biophys. Res. Commun. 157, 944–948.Google Scholar
  74. Thomsen, J., Lund, E. H., Kristiansen, K., Brunfeldt, K., and Malmquist, J. (1972).FEBS Lett. 22, 34–36.Google Scholar
  75. Tsuge, H., Ago, H., Noma, M., Nitta, K., Sugai, S., and Miyano, M. (1992).J. Biochem. 111, 141–143.Google Scholar
  76. Vanaman, T. C., Brew, K., and Hill, R. L. (1970).J. Biol. Chem. 245, 4583–4590.Google Scholar
  77. Vilotte, J.-L., Soulier, S., Mercier, J.-C., Gaye, P., Hue-Delahaie, D., and Furet, J.-P. (1987).Biochimie 69, 609–620.Google Scholar
  78. Warme, P. K., Momany, F. A., Rumball, S. V., Tuttle, R. W., and Scherage, H. A. (1974).Biochemistry 13, 768–782.Google Scholar
  79. White, F. H. Jr., McKenzie, H. A., Shaw, D. C., and Pearce, R. J. (1988).Biochem. Int. 16, 521–528.Google Scholar
  80. Yao, M., Tanaka, I., Hikichi, K., and Nitta, K. (1992).J. Biochem. 111, 1–3.Google Scholar
  81. Zeng, J., Rao, K. R., Brew, K., and Fenna, R. E. (1990).J. Biol. Chem. 265, 14886–14887.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • K. Ravi Acharya
    • 1
  • David I. Stuart
    • 2
    • 3
  • David C. Phillips
    • 4
  • Hugh A. McKenzie
    • 5
  • Carmel G. Teahan
    • 6
  1. 1.Department of BiochemistryUniversity of BathBathEngland
  2. 2.Laboratory of Molecular BiophysicsUniversity of OxfordOxfordEngland
  3. 3.New Chemistry LaboratoryOxford Centre for Molecular SciencesOxfordEngland
  4. 4.Advisory Board for the Research CouncilsOSTLondonEngland
  5. 5.Chemistry DepartmentUniversity College, University of New South Wales, ADFACanberraAustralia
  6. 6.Rayne Institute, Faculty of Clinical SciencesUniversity College LondonLondonEngland

Personalised recommendations