Skip to main content
Log in

On a result of Cobzas on the Hahn decomposition

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. Cobzas, Hahn decompositions of finitely additive measures. Arch. Math.27, 620–621 (1976).

    Google Scholar 

  2. R. Doss, The Hahn decomposition theorem. Proc. Amer. Math. Soc.80, 377 (1980).

    Google Scholar 

  3. N.Dunford and J. T.Schwartz, Linear Operators. Part I: General Theory. New York 1958.

  4. P. R.Halmos, Measure Theory. Berlin-Heidelberg-New York 1974.

  5. H. H.Schaefer, Banach Lattices and Positive Operators. Berlin-Heidelberg-New York 1974.

  6. K. D. Schmidt, A general Jordan decomposition. Arch. Math.38, 556–564 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, K.D. On a result of Cobzas on the Hahn decomposition. Arch. Math 39, 564–567 (1982). https://doi.org/10.1007/BF01899663

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01899663

Navigation