Archiv der Mathematik

, Volume 39, Issue 5, pp 385–393 | Cite as

The automorphism group of the semigroup of finite complexes of a rank one torsion free abelian group

  • Richard D. Byrd
  • Justin T. Lloyd
  • James W. Stepp
Article
  • 30 Downloads

Keywords

Abelian Group Automorphism Group Free Abelian Group Torsion Free Abelian Group Finite Complex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Baer, Abelian groups without elements of finite order. Duke Math. J.3, 68–122 (1937).Google Scholar
  2. [2]
    R. A.Beaumont and R. S.Pierce, Torsion free groups of rank two. Mem. Amer. Math. Soc.38 (1961).Google Scholar
  3. [3]
    G. Birkoff, Lattice-ordered groups. Ann. of Math.43, 298–331 (1942).Google Scholar
  4. [4]
    R. D. Byrd, J. T. Lloyd, R. A. Mena andJ. R. Teller, Retractable groups. Acta Math. Acad. Sci. Hungar.29, 219–233 (1977).Google Scholar
  5. [5]
    R. D. Byrd, J. T. Lloyd, R. A. Mena andJ. R. Teller, Extensions of group retractions. Internal J. Math. & Math. Sci.3, 719–730 (1980).Google Scholar
  6. [6]
    R. D.Byrd, J. T.Lloyd, F. D.Pedersen and J. W.Stepp, Automorphisms of the semigroup of finite complexes of a torsion free abeilan group. Submitted.Google Scholar
  7. [7]
    P.Conrad, Lattice-ordered groups. Lecture Notes, Tulane University (1970).Google Scholar
  8. [8]
    L.Fuchs, Infinite Abelian Groups, Vol II. New York 1973.Google Scholar
  9. [9]
    B. I.Plotkin, Groups of Automorphisms of Algebraic Systems. Groningen 1972.Google Scholar

Copyright information

© Birkhäuser Verlag 1982

Authors and Affiliations

  • Richard D. Byrd
    • 1
  • Justin T. Lloyd
    • 1
  • James W. Stepp
    • 1
  1. 1.Department of MathematicsUniversity of Houston Central CampusHouston

Personalised recommendations