Archiv der Mathematik

, Volume 39, Issue 4, pp 299–302 | Cite as

Some non-abelian 2-groups with abelian automorphism groups

  • Ruth Rebekka Struik


Automorphism Group Abelian Automorphism Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Joseph E. Adney, Jr. andTi Yen, Automorphisms of ap-group. Illinois J. Math.9, 137–143 (1965).Google Scholar
  2. [2]
    Bruce Edward Earnley, On finite groups whose group of automorphisms is abelian-Ph. D. thesis, Wayne State University (1975). Dissertation Abstracts, v. 36, p. 2269B.Google Scholar
  3. [3]
    Hans Fitting, Die Gruppe der zentralen Automorphismen einer Gruppe mit Hauptreihe. Math. Ann.114, 355–372 (1937).Google Scholar
  4. [4]
    Thomas A. Fournelle, Elementary abelianp-groups as automorphism groups of infinite groups, I. Math. Z.167, 259–270 (1979).Google Scholar
  5. [5]
    Marshall Hall, Jr. andJames K.Senior, The groups of order 2n, (n≦ 6). New York 1964.Google Scholar
  6. [6]
    Phillip Hall, The Edmonton notes on nilpotent groups. Queen Mary College Mathematics Notes, Cambridge. Queen Mary College 1957.Google Scholar
  7. [7]
    Hermann Heineken andHans Liebeck, The occurrence of finite groups in the automorphism group of nilpotent groups of class 2. Arch. Math.25, 8–16 (1974).Google Scholar
  8. [8]
    Anthony Hughes, Automorphisms of nilpotent groups and supersolvable orders. Proceedings of Symposia in Pure Mathematics. The Santa Cruz Conference on Finite Groups, 205–208, vol.37, Amer. Math. Soc., Providence, Rhode Island, 1980.Google Scholar
  9. [9]
    David W. Jonah andMarc W. Konvisser, Some non-abelianp-groups with abelian automorphism groups. Arch. Math.26, 131–133 (1975).Google Scholar
  10. [10]
    Richard Lawton, A note on a theorem of Heineken and Liebeck. Arch. Math.31, 520–523 (1978).Google Scholar
  11. [11]
    G. A. Miller, A non-abelian group whose group of isomorphisms is abelian. Messenger Math.43, 124–125 (1913).Google Scholar
  12. [12]
    Albert D. Otto, Central automorphisms of a finitep-group. Trans. Amer. Math. Soc.125, 280 (1966).Google Scholar
  13. [13]
    William R. Scott, Group Theory. Englewood Cliffs, New Jersey 1964.Google Scholar
  14. [14]
    Hans Zassenhaus, The Theory of Groups. Chelsea, New York 1958.Google Scholar

Copyright information

© Birkhäuser Verlag 1982

Authors and Affiliations

  • Ruth Rebekka Struik
    • 1
  1. 1.Department of MathematicsUniversity of ColoradoBoulderUSA

Personalised recommendations