Archiv der Mathematik

, Volume 17, Issue 6, pp 497–504 | Cite as

Sums ofmth powers in algebraic and abelian number fields

  • M. Bhaskaran


Number Field Abelian Number Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. T. Bateman andR. M. Stemmler, Waring's problem for algebraic number fields and primes of the form (p r−1)/(p d−1). Illinois J. Math.6, 142–156 (1962).Google Scholar
  2. [2]
    B. J. Birch, Waring's problem forp-adic number fields. Acta Arith.9, 169–176 (1964).Google Scholar
  3. [3]
    C. P. Ramanujam, Sums ofm th powers inp-adic rings. Mathematika10, 137–146 (1963).Google Scholar
  4. [4]
    C. L. Siegel, Generalization of Waring's problem to the algebraic number fields. Amer. J. Math.66, 122–136 (1944).Google Scholar
  5. [5]
    C. L. Siegel, Sums ofm th powers of algebraic integers. Ann. of Math., II. Ser.46, 313–319 (1945).Google Scholar
  6. [6]
    R. M. Stemmler, The easier Waring problem in algebraic number fields. Acta Arith.6, 447–468 (1961).Google Scholar
  7. [7]
    L. Tornheim, Sums ofn th powers in fields of prime characteristic. Duke Math. J.4, 359–362 (1938).Google Scholar
  8. [8]
    H.Weyl, Algebraic theory of numbers. Princeton 1940.Google Scholar

Copyright information

© Birkhäuser-Verlag 1966

Authors and Affiliations

  • M. Bhaskaran
    • 1
  1. 1.Ramanujan Institute of MathematicsMadras-5India

Personalised recommendations