Archiv der Mathematik

, Volume 19, Issue 2, pp 188–194 | Cite as

A generalized Floquet theory

  • T. A. Burton
  • J. S. Muldowney


Floquet Theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.Bellman, Stability Theory of Differential Equations. New York 1953.Google Scholar
  2. [2]
    E. A.Coddington and N.Levinson, Theory of Ordinary Differential Equations. New York 1955.Google Scholar
  3. [3]
    I. J. Epstein, Periodic Solutions of Systems of Differential Equations. Proc. Amer. Math. Soc.13, 690–694 (1962).Google Scholar
  4. [4]
    J. K.Hale, Oscillations in Non-linear Systems. New York 1963.Google Scholar
  5. [5]
    M. Laitoch, Eine Erweiterung der Methode Floquets zur Darstellung des Fundamental-systems von Lösungen der Differentialgleichung zweiter Ordnungy″=Q(x)y. Czech. Math. J.5, (80) 164–174 (1955). (Math. Rev.17, 612 (1956).)Google Scholar
  6. [6]
    D. C. Lewis, Autosynartetic Solutions of Differential Equations. Amer. J. Math.83, 1–32 (1961).Google Scholar
  7. [7]
    D. C.Lewis, Autosynartetic Families of Solutions. In: Int. Symp. Nonlinear Differential Equations and Nonlinear Mechanics, ed. by J. P.La Salle and S.Lefschetz, p. 99–104. New York 1963.Google Scholar
  8. [8]
    J. Maravčik, Generalization of Floquet's theory for ordinary linear differential equations ofn th order. Casopis Pěst. Mat.91, 8–17 (1966). (Math. Rev.33, 329, 58 (1967).)Google Scholar
  9. [9]
    J. S. Muldowney, Linear Systems of Differential Equations with Periodic Solutions. Proc. Amer. Math. Soc.18, 22–27 (1967).Google Scholar

Copyright information

© Birkhäuser-Verlag 1968

Authors and Affiliations

  • T. A. Burton
    • 1
  • J. S. Muldowney
    • 2
  1. 1.Mathematical DepartmentSouthern Illinois UniversityCarbondaleUSA
  2. 2.Mathematical DepartmentUniversity of OklahomaNormanUSA

Personalised recommendations