Archiv der Mathematik

, Volume 19, Issue 1, pp 37–42 | Cite as

Applications of an elementary theorem to number theory

  • Harlan Stevens
  • Larry Kuty
Article
  • 45 Downloads

Keywords

Number Theory Elementary Theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Artin, Quadratische Körper im Gebiet der höheren Kongruenzen I. Math. Z.19, 153–246 (1924).Google Scholar
  2. [2]
    A. Brauer andT. L. Reynolds, On a theorem of Aubry-Thue. Can. J. Math.3, 367–374 (1951).Google Scholar
  3. [3]
    S. Chowla, On the congruence\(\sum\limits_{i = 1}^8 {a_i x_i^k } \equiv 0 (\bmod p)\). J. Indian Math. Soc.25, 47–48 (1961).Google Scholar
  4. [4]
    R. Dedekind, Theorie der höheren Congruenzen. J. Reine Angew. Math.54, 1–26 (1857).Google Scholar
  5. [5]
    L. J. Mordell, On the equationax 2+by 2+cz 2=0. Monatsh. Math.55, 323–327 (1951).Google Scholar
  6. [6]
    H. Stevens, Linear homogeneous equations over finite rings. Can. J. Math.16, 532–538 (1964).Google Scholar
  7. [7]
    A.Tietavainen, On the non-trivial solvability of some equations and systems of equations in finite fields. Ann. Acad. Sci. Fenn., Ser. A I360 (1965).Google Scholar
  8. [8]
    M. F. Tinsley, A combinatorial theorem in number theory. Duke Math. J.33, 75–80 (1966).Google Scholar

Copyright information

© Birkhäuser Verlag 1968

Authors and Affiliations

  • Harlan Stevens
    • 1
  • Larry Kuty
    • 2
  1. 1.Department of MathematicsRobert CollegeIstanbulTurkey
  2. 2.Department of MathematicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations