Archiv der Mathematik

, Volume 19, Issue 1, pp 37–42 | Cite as

Applications of an elementary theorem to number theory

  • Harlan Stevens
  • Larry Kuty


Number Theory Elementary Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Artin, Quadratische Körper im Gebiet der höheren Kongruenzen I. Math. Z.19, 153–246 (1924).Google Scholar
  2. [2]
    A. Brauer andT. L. Reynolds, On a theorem of Aubry-Thue. Can. J. Math.3, 367–374 (1951).Google Scholar
  3. [3]
    S. Chowla, On the congruence\(\sum\limits_{i = 1}^8 {a_i x_i^k } \equiv 0 (\bmod p)\). J. Indian Math. Soc.25, 47–48 (1961).Google Scholar
  4. [4]
    R. Dedekind, Theorie der höheren Congruenzen. J. Reine Angew. Math.54, 1–26 (1857).Google Scholar
  5. [5]
    L. J. Mordell, On the equationax 2+by 2+cz 2=0. Monatsh. Math.55, 323–327 (1951).Google Scholar
  6. [6]
    H. Stevens, Linear homogeneous equations over finite rings. Can. J. Math.16, 532–538 (1964).Google Scholar
  7. [7]
    A.Tietavainen, On the non-trivial solvability of some equations and systems of equations in finite fields. Ann. Acad. Sci. Fenn., Ser. A I360 (1965).Google Scholar
  8. [8]
    M. F. Tinsley, A combinatorial theorem in number theory. Duke Math. J.33, 75–80 (1966).Google Scholar

Copyright information

© Birkhäuser Verlag 1968

Authors and Affiliations

  • Harlan Stevens
    • 1
  • Larry Kuty
    • 2
  1. 1.Department of MathematicsRobert CollegeIstanbulTurkey
  2. 2.Department of MathematicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations