, Volume 32, Issue 1, pp 129–150 | Cite as

The behaviour of the Lagrangian multiplier test in testing the orders of an ARMA-model

  • B. M. Pötscher


The Lagrange multiplier test for testing the order of an ARMA-model is investigated. It is shown that it exhibits some pathologies stemming from the special properties of parameter spaces of ARMA-models. As a consequence one has to be careful in using the LM-test in this context. Furthermore results of this paper are used in a subsequent paper [Pötscher, 1983], to show the consistency of an order estimation procedure based on Lagrange multiplier tests, described there.


Parameter Space Stochastic Process Probability Theory Economic Theory Lagrange Multiplier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Billingsley, P.: Convergence of Probability Measures, Wiley, New York 1968.Google Scholar
  2. Deistler, M.: The Properties of the Parameterization of ARMAX Systems and their Relevance for Structural Estimation and Dynamic Specification. Econometrica51, 1983.Google Scholar
  3. Deistler, M., W. Dunsmuir andE. J. Hannan: Vector Linear Time series Models: Corrections and Extensions. Adv. Appl. Prob.10, 1978, 360–372.Google Scholar
  4. Deistler, M., andE. J. Hannan: Some Properties of the Parameterization of ARMA Systems with Unknown Order. J. of Multiv. Anal.11, 1981.Google Scholar
  5. Dunsmuir, W., andE. J. Hannan: Vector Linear Time Series Models. Adv. Appl. Prob.8, 1976, 339–364.Google Scholar
  6. Gänssler, P., andW. Stute: Wahrscheinlichkeitstheorie. Springer, Berlin-Heidelberg 1977.Google Scholar
  7. Hannan, E.J.: The Estimation of the Order of an ARMA Process. Ann. Stat.8, 1980, 1071–1081.Google Scholar
  8. —: Multiple Time Series. Wiley, New York 1970.Google Scholar
  9. Hannan, E.J., andB. G. Quinn: The Determination of the Order of an Autoregression. J. Roy. Stat. Soc. B,41, 2, 1979, 190–195.Google Scholar
  10. Hannan, E. J., W. Dunsmuir andM. Deistler: Estimation of Vector ARMAX Models. J. of Multiv. Anal.10, 1980, 275–295.Google Scholar
  11. Hannan, E.J., andJ. Rissanen: Recursive Estimation of Mixed Autoregressive-Moving Average Order. Biometrika69, 1982, 81–94.Google Scholar
  12. Hosking, J.R.M.: Lagrange-Multiplier Tests of Multivariate Time-Series Models. J. Roy. Stat. Soc. B.43, No. 2, 1981, 219–230.Google Scholar
  13. Kohn, R.: Asymptotic Estimation and Hypothesis Testing Results for Vector Linear Time Series Models. Econometrica47 No. 4, 1979, 1005–1030.Google Scholar
  14. Ljung, L., andP. Caines: Asymptotic Normality of Prediction Error Estimators for Approximate System Models. Stochastics3, 1979, 29–46.Google Scholar
  15. Ploberger, W.: Prediction Error Schätzung in linearen Systemen. Doctoral Thesis, Univ. of Technology, Vienna 1981.Google Scholar
  16. —: On the Prediction Error Estimation of Linear Rational Models I. Research Report No. 13, Dept. of Econometrics and Operations Research, Univ. of Technology, Vienna 1982.Google Scholar
  17. Poskitt, D. S., andA. R. Tremayne: An Approach to Testing Linear Time Series Models. Ann. Stat.9, 1981, 974–986.Google Scholar
  18. — Testing the Specification of a Fitted Autoregressive Moving Average Model. Biometrika67, 2, 1980, 359–363.Google Scholar
  19. — Diagnostic Tests for Multiple Time Series Models. Ann. Stat.10, 1982, 114–120.Google Scholar
  20. Poskitt, D.S. Testing Misspecification in Vector Time Series Models with Exogenous Variables. Univ. of York 1981a.Google Scholar
  21. Pötscher, B. M.: Order Estimation in ARMA-Models by Lagrangian Multiplier Tests. Ann. Stat.11, 1983, 872–885.Google Scholar
  22. —: The Behaviour of the Lagrangian Multiplier Test in Testing the Orders of an ARMA-Model. Research Report Nr. 16, Department of Econometrics and Operations Research, Univ. of Technology, Vienna 1982.Google Scholar
  23. Rao, C. R., andS. K. Mitra: Generalized Inverse of Matrices and its Applications. Wiley, New York 1971.Google Scholar
  24. Silvey, S.D.: The Lagrangian Multiplier Test. Ann. Math. Stat.30, No. 2, 1959, 389–407.Google Scholar
  25. Stewart, G. W.: On the Continuity of the Generalized Inverse. SIAM J Appl. Math.17, 1969, 33–45.Google Scholar

Copyright information

© Physica-Verlag Ges.m.b.H. 1985

Authors and Affiliations

  • B. M. Pötscher
    • 1
  1. 1.Inst. of Econometrics and Operations ResearchUniversity of TechnologyVienna

Personalised recommendations