Derivative functions and strong approximation of Fourier series

  • L. Leindler


Fourier Series Strong Approximation Derivative Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Freud, Über die Sättigungsklasse der starken Approximation durch Teilsummen der Fourierschen Reihe,Acta Math. Acad. Sci. Hungar.,20 (1969), 275–279.CrossRefGoogle Scholar
  2. [2]
    V. G. Krotov andL. Leindler, On the strong summability of Fourier series and the classesH ω,Acta Sci. Math. Szeged,40 (1978), 93–98.Google Scholar
  3. [3]
    L. Leindler, On summability of Fourier series,Acta Sci. Math. Szeged,29 (1968), 147–162.Google Scholar
  4. [4]
    L. Leindler, On strong approximation of Fourier series,Approximation Theory (Proc. Conf., Poznan, 1972): 129–140 (Warszawa, 1975).Google Scholar
  5. [5]
    L. Leindler, Strong and best approximation of Fourier series and the Lipschitz classes,Analysis Math.,4 (1978), 101–116.Google Scholar
  6. [6]
    L. Leindler, Strong approximation of Fourier series and structural properties of functions,Acta Math. Acad. Sci. Hungar.,33 (1979), 105–125.Google Scholar

Copyright information

© Akadémiai Kiadó 1980

Authors and Affiliations

  • L. Leindler
    • 1
  1. 1.Bolyai InstituteJozsef Attila UniversitySzeged

Personalised recommendations