Advertisement

Geometric & Functional Analysis GAFA

, Volume 5, Issue 5, pp 731–799 | Cite as

Entropies et rigidités des espaces localement symétriques de courbure strictement négative

  • G. Besson
  • G. Courtois
  • S. Gallot
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. [B]Y. Babenko, Closed geodesics, asymptotic volume, and characteristics of group growth, Math. USSR Izvestya 33 (1989), 1–37.Google Scholar
  2. [BaGrS]W. Ballmann, M. Gromov, V. Schroeder, Manifolds of Nonpositive Curvature, Birkhäuser Boston Inc. 1985.Google Scholar
  3. [BePe]R. Benedetti, C. Petronio, Lectures on Hyperbolic Geometry, Universitext, Springer Verlag 1993.Google Scholar
  4. [BenFoL]Y. Benoist, P. Foulon, F. Labourie, Flots d'Anosov à distributions stable et instable différentiables, J. Amer. Math. Soc. 5:1 (1992), 33–74.Google Scholar
  5. [Ber]M. Berger, Du côté de chez Pu, Ann. Sci. École Norm. Sup. 5 (1972), 1–44.Google Scholar
  6. [BerGaMaz]M. Berger, P. Gauduchon, E. Mazet, Le spectre d'une variété riemannienne, Springer Lecture Notes in Mathematics 194, (1971).Google Scholar
  7. [Bes1]A.L. Besse, Manifolds All of Whose Geodesics are Closed, Ergebnisse der Math., Springer-Verlag, 1978.Google Scholar
  8. [Bes2]A.L. Besse, Einstein Manifolds, Ergebnisse der Math., Springer-Verlag, 1987.Google Scholar
  9. [BoW]M. Boileau, S. Wang, Non-zero degree maps and surface bundles overS 1, preprint, Université Paul Sabatier, Toulouse, 1995.Google Scholar
  10. [BsCoG1]G. Besson, G. Courtois, S. Gallot, Le volume et l'entropie minimal des espaces localement symétriques, Invent. Math. 103 (1991), 417–445.Google Scholar
  11. [BsCoG2]G. Besson, G. Courtois, S. Gallot, Les variétés hyperboliques sont des minima locaux de l'entropie topologique, Invent. Math. 117 (1994), 403–445.Google Scholar
  12. [BsCoG3]G. Besson, G. Courtois, S. Gallot, Sur le volume des simplexes hyperboliques idéaux, en préparation.Google Scholar
  13. [BuK]K. Burns, A. Katok, Manifolds with non-positive curvature, Ergod. Th. of Dynam. Sys. 5 (1985), 307–317.Google Scholar
  14. [C]K. Corlette, Archimedean superrigidity and hyperbolic geometry, Ann. of Math. 135 (1992), 165–182.Google Scholar
  15. [CrKl]C. Croke, B. Kleiner, Conjugacy and rigidity for manifolds with a parallel vector field, preprint, février 1992.Google Scholar
  16. [Cr]C. Croke, Rigidity for surfaces of non-positive curvature, Comm. Math. Helv. 65:1 (1990), 150–169.Google Scholar
  17. [CdV]Y. Colin de Verdière, Spectre du laplacien et longueurs des géodésiques périodiques, Compositio Math. 27 (1973), 159–184.Google Scholar
  18. [DRi]E. Damek, F. Ricci, A class of non-symmetric harmonic riemannian spaces, Bull. Amer. Math. Soc. 27 (1992), 139–142.Google Scholar
  19. [DoE]E. Douady, C. Earle, Conformally natural extension of homeomorphisms of the circle, Acta. Math. 157 (1986), 23–48.Google Scholar
  20. [F]H. Federer, Geometric Measure Theory, Grundlehren Band, Springer Verlag, 153 (1969).Google Scholar
  21. [Fo]P. Foulon, Nouveraux invariants géométriques des systèmes dynamiques du second ordre: application à l'étude du comportement ergodique, Thèse d'état, École Polytechnique, Centre de Mathématiques (1986).Google Scholar
  22. [FoL]P. Foulon, F. Labourie, Sur les variétés compactes asymptotiquement harmoniques, Invent. Math. 109 (1992), 97–111.Google Scholar
  23. [Fu]H. Furstenberg, A Poisson formula for semi-simple Lie groups, Annals of Math. 77 (1963), 335–386.Google Scholar
  24. [GHuLa]S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry, Universitext, Springer-Verlag (1987).Google Scholar
  25. [Gr1]M. Gromov, Volume and bounded cohomology, Publ. Math. Inst. Hautes Étud. Sci. 56 (1981), 213–307.Google Scholar
  26. [Gr2]M. Gromov, Filling riemannian manifolds, J. Differ. Geom. 18 (1983), 1–147.Google Scholar
  27. [GrT]M. Gromov, W. Thurston, Pinching constants for hyperbolic manifolds, Invent. Math. 89 (1987), 1–12.Google Scholar
  28. [H1]U. Hamenstädt, Time-preserving conjugacies of geodesic flows, Ergod. Th. & Dynam. Sys. 12 (1992), 67–74.Google Scholar
  29. [H2]U. Hamenstädt, Anosov flows which are uniformly expanding at periodic points, à paraître.Google Scholar
  30. [HoR]D. Hong, S. Rajeev, Universal Teichmüller space and Diff(S 1)/S 1, Comm. Math. Phys. 135 (1991), 401–411.Google Scholar
  31. [Hop]H. Hopf, Abbildungsklassenn-dimensionaler mannigfaltigkeiten, Math. Annalen 96 (1926), 209–224.Google Scholar
  32. [K]A. Katok, Four applications of conformal equivalence to geometry and dynamics, Ergodic Theory Dyn. Sys. 8 (1988), 139–152.Google Scholar
  33. [KKnWe]A. Katok, G. Knieper, H. Weiss, Regularity of topological entropy, à paraître.Google Scholar
  34. [Ki]A. Kirillov, Kähler structures onK-orbits of the group of diffeomorphisms of a circle, Funkts. Anal. Prilozhen 21:2 (1987), 42–45.Google Scholar
  35. [KiY]A. Kirillov, D. Yuriev, Kähler of the infinite dimensional homogenous manifold Diff+(S 1)/Rot(S 1), Funct. Anal. Appl. 20 (1986), 322–324, ibid Funct. Anal. Appl. 21 (1987), 284–294.Google Scholar
  36. [Le]C. LeBrun, Einstein metrics and Mostow rigidity, Preprint SUNY at Stony Brook (november 1994)Google Scholar
  37. [Led1]F. Ledrappier, Harmonic measures and Bowen-Margulis measures, Israel J. Math. 71 (1990), 275–287.Google Scholar
  38. [Led2]F. Ledrappier, Applications of dynamics to compact manifolds of negative curvature, Conférence Congrès International de Zürich (1994).Google Scholar
  39. [Li]A. Lichnerowicz, Sur les espaces riemanniens complètement harmoniques, Bull. Soc. Math. France 72 (1944), 146–169.Google Scholar
  40. [M]A. Manning, Topological entropy for geodesic flows, Ann. Math. 110 (1979), 567–573.Google Scholar
  41. [Ma]G.A. Margulis, Applications of ergodic theory to the investigation of manifolds of negative curvature, Funct. Anal. Appl. 3 (1969), 335–336.Google Scholar
  42. [Mo]F. Morgan, Calibrations and new singularities in area minimizing surfaces: a survey, Proc. Conf. Problèmes Variationnels, Paris (1988).Google Scholar
  43. [Mos]G.D. Mostow, Quasiconformal mappings inn-space and the rigidity of hyperbolic space forms, Publications de l'IHES 34 (1968), 53–104.Google Scholar
  44. [N]S. Nag, On the tangent space to the universal Teichmüller space, Ann. Acad. Scient. Fennicae, Seires A.I, Math. 18 (1993), 377–393.Google Scholar
  45. [O]J.P. Otal, Le spectre marqué des longueurs des surfaces à courbure négative, Ann. Math. 131 (1990), 151–162.Google Scholar
  46. [P]O. Pekonen, Universal Teichmüller space in geometry and physics, preprint (1993).Google Scholar
  47. [Sc]L. Schwartz, Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures, Tata Institute of Fundamental Research, Oxford University Press (1973),Google Scholar
  48. [Se]B. Sevennec, Conversations scientifiques.Google Scholar
  49. [Si]Y.T. Siu, The complex analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, Ann. of Math. 112 (1980), 73–111.Google Scholar
  50. [Sp]E.H. Spanier, Algebraic Topology, McGraw-Hill (1966).Google Scholar
  51. [Sz]Z. Szabo, The Lichnerowicz conjecture on harmonic manifolds, J. Differential Geom. 31 (1990), 1–28.Google Scholar
  52. [T]W. Thurston, The geometry and topology of three-manifolds, Princeton University (1979).Google Scholar
  53. [Wi]E. Witten, Coadjoint orbits and the Virasoro group, Comm. Math. Phys. 114 (1988), 1–53.Google Scholar
  54. [Z]R.J. Zimmer, Ergodic Theory and Semisimple Groups, Monographs in Mathematics 81, Birkhäuser (1984).Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • G. Besson
    • 1
  • G. Courtois
    • 2
  • S. Gallot
    • 3
  1. 1.Institut FourierC.N.R.S.-U.R.A. 188Saint Martin d'HèresFrance
  2. 2.École PolytechniqueC.N.R.S.-U.R.A. 169 Centre de MathPalaiseauFrance
  3. 3.École Normale SupérC.N.R.S.-U.M.R. 128Lyon 07France

Personalised recommendations