Lagrange interpolation for continuous functions of bounded variation

  • P. Vértesi


Continuous Function Bounded Variation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Szegő,Orthogonal Polynomials, AMS Coll. Publ. Vol. XXIII (New York, 1959).Google Scholar
  2. [2]
    D. L. Berman, Convergence of Langrange interpolation for functions of absolutely continuous and of bounded variations,DAN SSSR,112 (1957), 9–12 (Russian).Google Scholar
  3. [3]
    J. L. Geronimus, Convergence of Lagrange interpolation taken at zeros of orthogonal polynomials,Izv. AN SSSR,27 (1963), 529–560 (Russian).Google Scholar
  4. [4]
    O. Kis, Notes on the speed of convergence of Lagrange interpolation,Annales Univ. Sci. Budapest, Sectio Math.,11 (1968), 27–40 (Russian).Google Scholar
  5. [5]
    P. Vértesi, On Lagrange interpolation,Period. Math. Hungar. Google Scholar
  6. [6]
    P. Vértesi, Notes on the Hermite-Fejér interpolation based on the Jacobi abscissas,Acta Math. Acad. Sci. Hungar.,24 (1973), 233–239.Google Scholar
  7. [7]
    G. P. Névai, Some cases when the order of trigonometric interpolation is the best possible,Studia Sci. Math. Hungar.,7 (1972), 379–390 (Russian).Google Scholar

Copyright information

© Akadémiai Kiadó 1980

Authors and Affiliations

  • P. Vértesi
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapest

Personalised recommendations