Lagrange interpolation for continuous functions of bounded variation

  • P. Vértesi


Continuous Function Bounded Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Szegő,Orthogonal Polynomials, AMS Coll. Publ. Vol. XXIII (New York, 1959).Google Scholar
  2. [2]
    D. L. Berman, Convergence of Langrange interpolation for functions of absolutely continuous and of bounded variations,DAN SSSR,112 (1957), 9–12 (Russian).Google Scholar
  3. [3]
    J. L. Geronimus, Convergence of Lagrange interpolation taken at zeros of orthogonal polynomials,Izv. AN SSSR,27 (1963), 529–560 (Russian).Google Scholar
  4. [4]
    O. Kis, Notes on the speed of convergence of Lagrange interpolation,Annales Univ. Sci. Budapest, Sectio Math.,11 (1968), 27–40 (Russian).Google Scholar
  5. [5]
    P. Vértesi, On Lagrange interpolation,Period. Math. Hungar. Google Scholar
  6. [6]
    P. Vértesi, Notes on the Hermite-Fejér interpolation based on the Jacobi abscissas,Acta Math. Acad. Sci. Hungar.,24 (1973), 233–239.Google Scholar
  7. [7]
    G. P. Névai, Some cases when the order of trigonometric interpolation is the best possible,Studia Sci. Math. Hungar.,7 (1972), 379–390 (Russian).Google Scholar

Copyright information

© Akadémiai Kiadó 1980

Authors and Affiliations

  • P. Vértesi
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapest

Personalised recommendations