Estimations for some interpolatory processes

  • P. Vértesi


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    O. Kis Remarks on the order of convergence of Langrangian interpolation,Ann. Univ. Sci. Budapest, Sectio Math.,1 (1968), 27–40 (Russian).Google Scholar
  2. [2]
    P. O. Runck Über Konvergenzfragen von Folgen linearen Operatoren in Banach Räumen,Funktionalanal., Appr. th., Num. Math., ISNM 7 (1967), 208–212.Google Scholar
  3. [3]
    P. Vértesi, On certain linear operators. VIII,Acta Math. Acad. Sci. Hungar.,25 (1974), 171–187.Google Scholar
  4. [4]
    P. Vértesi On certain linear operators. VII,Acta Math. Acad. Sci. Hungar.,25 (1974), 67–80.Google Scholar
  5. [5]
    P. Vértesi On certain linear operators. IV,Acta Math. Acad. Sci. Hungar.,23 (1972), 115–125.CrossRefGoogle Scholar
  6. [6]
    P. Vértesi Lower estimations for some interpolating processes,Studia Sci. Math. Hungar.,5 (1970), 401–410.Google Scholar
  7. [7]
    O. Kis Notes on the orders of interpolation errors,Acta Math. Acad. Sci. Hungar.,20 (1969), 339–346 (Russian).CrossRefGoogle Scholar
  8. [8]
    G. Szegö Orthogonal polynomials, Amer. Math. Soc. (New York, 1959).Google Scholar
  9. [9]
    I. E. Gopengauz On a theorem of Timan,Mat. Zam.,1 (1967), 163–192 (Russian).Google Scholar
  10. [10]
    G. I. Natanson Two-sided estimate for the Lebesgue-function,Izv. Vyss. Ucebn. Zaved. Matematika,11 (1967), 67–74 (Russian).Google Scholar
  11. [11]
    L. Fejér Die Abschätzung eines Polynoms,Math. Zeitschrift,32 (1930), 426–457.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1976

Authors and Affiliations

  • P. Vértesi
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of Sciences 1053Budapest

Personalised recommendations