Acta Mathematica Academiae Scientiarum Hungarica

, Volume 39, Issue 4, pp 401–407 | Cite as

A note on Ky Fan's minimax theorem

  • I. Joó
  • L. L. Stachó


Minimax Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. BrézisL. NirenbergG. Stampacchia, A remark on Ky Fan's minimax principle,Boll. U.M.I., (4)6 (1972), 293–300.Google Scholar
  2. [2]
    R. Edwards,Functional Analysis, Mir Publisher (Moscow, 1969).Google Scholar
  3. [3]
    K. Fan, Minimax theorems,Proc. Acad. Sci. USA,39 (1953), 42–48.Google Scholar
  4. [4]
    L. DanzerB. GrünbaumV. Klee, Helly's theorem and its relatives,Proc. of Symposia in pure Mathematics, Amer. Math. Soc. (Providence, Rhode Island, 1963).Google Scholar
  5. [5]
    I. Joó, A simple proof for von Neumann's minimax theorem,Acta Sci. Math. Szeged,42 (1980), 91–94.Google Scholar
  6. [6]
    J. von Neumann, Zur Theorie der Gesellschaftsspiele,Math. Ann.,100 (1928), 295–320.Google Scholar
  7. [7]
    L. L. Stachó, Minimax theorems beyond topological vector spaces,Acta Sci. Math. Szeged,42 (1980), 157–164.Google Scholar

Copyright information

© Akadémiai Kiadó 1982

Authors and Affiliations

  • I. Joó
    • 1
  • L. L. Stachó
    • 2
  1. 1.Department II of AnalysisEötvös Loránd UniversityBudapest
  2. 2.Bolyai InstituteJózsef Attila UniversitySzeged

Personalised recommendations