Geometric & Functional Analysis GAFA

, Volume 4, Issue 5, pp 545–585 | Cite as

Noncommutative local algebra

  • A. L. Rosenberg
Article

Abstract

The main purpose of this work is to introduce the first notions of noncommutative algebraic geometry — the spectrum of an abelian category, localizations at points of the spectrum, canonical topologies, supports, associated points etc. — and to study their basic properties.

Keywords

Basic Property Algebraic Geometry Abelian Category Local Algebra Canonical Topology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    N. Bourbaki, Algebre Commutative, Elements de Math. Hermann, Paris (1961–1965).Google Scholar
  2. [BuD]
    I. Bucur, A. Deleanu, Introduction to the theory of categories and functors, Pure and Appl. Math., V.XIX, John Wiley & Sons, London-New York-Sydney, 1969.Google Scholar
  3. [C]
    P.M. Cohn, The Affine Scheme of a General Ring, Lecture Notes in Math. 753, 1979.Google Scholar
  4. [CoK]
    C. De Concini, V. Kac, Representations of quantum groups at root of 1, preprint, 1990.Google Scholar
  5. [Di]
    J. Dixmier, Algèbres Enveloppantes, Gauthier-Villars, Paris/Bruxelles/Montreal, 1974.Google Scholar
  6. [G]
    P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France, 90 (1962), 323–449.Google Scholar
  7. [GZ]
    P. Gabriel, M. Zisman, Calculus of fractions and homotopy theory, Springer-Verlag, Berlin-Heidelberg-New York, 1967.Google Scholar
  8. [Go]
    J.S. Golan, Localization of Noncommutative Rings, Marcel Dekker, New York, 1975.Google Scholar
  9. [M]
    Yu. I. Manin, Quantum Groups and Noncommutative Geometry, Publications du C.R.M.; Univ. de Montreal, 1988.Google Scholar
  10. [OV]
    F. Van Oystaeyen, A. Vershoren, Noncommutative Algebraic Geometry, Lecture Notes in Mathematics 887, Springer-Verlag, Berlin-Heidelberg-New York (1981).Google Scholar
  11. [R1]
    A.L. Rosenberg, Noncommutative affine semischemes and schemes, in “Seminar on Supermanifolds” 26, Reports of Dept. of Math. of Stockholm Univ. (1988), 1–317.Google Scholar
  12. [R2]
    A.L. Rosenberg, Left spectrum, Levitzki radical and noncommutative schemes, Proc. of Natnl. Acad. 87, 8583–8586 (1990).Google Scholar
  13. [R3]
    A.L. Rosenberg, Noncommutative affine schemes, to appear in J. of Algebra.Google Scholar
  14. [R4]
    A.L. Rosenberg, The spectrum of hyperbolic categories and representations of (quantized) Weyl and Heisenberg algebras, preprint 1993.Google Scholar
  15. [R5]
    A.L. Rosenberg, The spectrum of the algebra of skew differential operators and the irreducible representations of the quantum Heisenberg algebra, Commun. Math. Phys. 142 (1991), 567–588.Google Scholar
  16. [R6]
    A.L. Rosenberg, Picard Type Monads Representations, preprint, 1993.Google Scholar
  17. [R7]
    A.L. Rosenberg, Noncommutative globalization, preprint, 1993.Google Scholar
  18. [S]
    S.P. Smith, Quantum Groups: an Introduction and Survey for Ring Theorists, preprint 1990.Google Scholar
  19. [TT]
    R.W. Thomason, T. Trobauch, Higher algebraicK-theory of schemes, in The Grothendieck Festschrift, v. 3, Birkhäuser, Boston-Basel-Berlin, 1990.Google Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • A. L. Rosenberg
    • 1
  1. 1.Max-Plank-Institut für MathematikBonnGermany

Personalised recommendations