Geometric & Functional Analysis GAFA

, Volume 4, Issue 3, pp 259–269 | Cite as

Riemannian tori without conjugate points are flat

  • D. Burago
  • S. Ivanov


Conjugate Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]A. Avez, Variétés riemanniennes sans points focaux. C.R.A.S. A-B 270 (1970), A 188–191.Google Scholar
  2. [B]I. Babenko, Asymptotic volume of tori and geometry of convex bodies, Mat. Zametki 44:2 (1988), 177–188.Google Scholar
  3. [Ba1]V. Bangert, Minimal geodesics, Erg. Theory and Dyn. Syst. 10 (1990), 263–286.Google Scholar
  4. [Ba2]V. Bangert, Geodesic rays, Busemann functions and monotone twist maps. Calc. Var. 2 (1994), 49–63.Google Scholar
  5. [Bu1]D. Burago, Periodic metrics, Advances in Soviet Math. 9, New York (1992), 205–210.Google Scholar
  6. [Bu2]D. Burago, Periodic Metrics, In “Seminar on Dynamical Systems”, Progress in Nonlinear Differential Equations (H. Brezis, ed.) 12, 90–96, Birkhauser, 1994.Google Scholar
  7. [BurZ]Yu. Burago, V. Zalgaller, Geometric Inequalities. Springer-Verlag 1988.Google Scholar
  8. [Bus]H. Busemann, The Geometry of Geodesics, Acad. Press, New York, 1955.Google Scholar
  9. [C]C. Croke, Volumes of balls in manifolds without conjugate points, Int. J. Math. 3:4 (1992), 455–467.Google Scholar
  10. [CF]C. Croke, A. Fathi, An inequality between energy and intersections, Bull. London Math. Soc. 22 (1990), 489–494.Google Scholar
  11. [CK]C. Croke, B. Kleiner, On tori without conjugate points, Preprint.Google Scholar
  12. [G]L. Green, A theorem of E. Hopf, Mich. Math. J. 5 (1958), 31–34.Google Scholar
  13. [Gr]M. Gromov, Dimension, non-linear spectra and width, Springer Lecture Notes in Mathematics 1317 (1988), 132–184.Google Scholar
  14. [H]J. Heber, Personal communication.Google Scholar
  15. [HeM]G. Hedlund, M. Morse, Manifolds without conjugate points, Trans. Amer. Math. Soc. 51 (1942), 362–386.Google Scholar
  16. [Ho]E. Hopp, Closed Surfaces Without Conjugate Points, Proc. Nat. Acad. of Sci. 34, 1948.Google Scholar
  17. [Kn]A. Knauf, Closed orbits and converse KAM Theory, Nonlinearity 3 (1990), 961–973.Google Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • D. Burago
    • 1
  • S. Ivanov
    • 2
  1. 1.Laboratory for Theory of Algorithms St. Petersburg Institute for InformaticsRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations