A class of continuous functions and their degree of approximation

  • P. D. Kathal
  • A. S. B. Holland
  • B. N. Sahney


Continuous Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Alexits,Convergence Problems of Orthogonal Series, Pergamon Press (1961).Google Scholar
  2. [2]
    G. H. Hardy,Divergent Series (Oxford, 1949).Google Scholar
  3. [3]
    A. B. S. Holland, B. N. Sahney andJ. Tzimbalario, On degree of approximation of a class of functions by means of Fourier series,Acta. Sci. Math. Szeged,38 (1976), 69–72.Google Scholar
  4. [4]
    G. G. Lorentz,Approximation of Functions, Holt, Rinehart and Winston (New York, 1966).Google Scholar
  5. [5]
    B. N. Sahney andD. S. Goel, On the degree of approximation of continuous functions,Ranchi Univ. Math. Jour.,4 (1973), 50–53.Google Scholar
  6. [6]
    A. Zygmund,Trigonometric Series, Vol. I & II. Cambridge University Press (Cambridge, 1968).Google Scholar

Copyright information

© Akadémiai Kiadó 1977

Authors and Affiliations

  • P. D. Kathal
    • 1
  • A. S. B. Holland
    • 2
  • B. N. Sahney
    • 2
  1. 1.Govt. CollegeSaugar UniversityMandlaIndia
  2. 2.Department of MathematicsThe University of CalgaryCalgaryCanada

Personalised recommendations