An almost sure invariance principle for lacunary trigonometric series

  • I. Berkes


Lebesgue Measure Probability Space Invariance Principle Dependent Random Variable Markov Inequality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I. Berkes, Approximation of lacunary Walsh-series with Brownian motion,Studia Sci. Math. Hungar. (to appear).Google Scholar
  2. [2]
    P. Erdős, On trigonometric sums with gaps,Magyar Tud. Akad. Mat. Kut. Int. Közl.,7A (1962), 37–42.MathSciNetMATHGoogle Scholar
  3. [3]
    V. Strassen, Almost sure behaviour of sums of independent random variables and martingales,Proc. Fifth Berkeley Symp. Math. Statist. Probab., Vol. II. (Part I) 315–343. Univ. of California Press, 1967.MathSciNetMATHGoogle Scholar

Copyright information

© Akadémiai Kiadó 1975

Authors and Affiliations

  • I. Berkes
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations