An interpolation-theoretical characterization of the classical orthogonal polynomials



Orthogonal Polynomial Hermite Polynomial Laguerre Polynomial Fundamental Point Interpolation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Aczél, Eine Bemerkung über die Charakterisierung der „klassischen” Orthogonalpolynome,Acta Math. Acad. Sci. Hungar. 4 (1953), 315–321.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    L. Feldmann, On a characterization of the classical orthogonal polynomials,Acta Sci. Math. Szeged,17 (1956), 129–133.MathSciNetMATHGoogle Scholar
  3. [3]
    M. Mikolás, A Jacobi-, Laguerre- és Hermite-féle polinomok együttes jellemzéséről (Common characterization of the Jacobi, Laguerre and Hermite-like polynomials),Matematikai Lapok,7 (1956), 238–248 (in Hungarian).MathSciNetGoogle Scholar
  4. [4]
    P. Lesky, Die Charakterisierung der klassischen orthogonalen Polynome durch Sturm—Liouvillesche Differentialgleichungen,Arch. Rat. Mech. Anal.,10 (1962), 341–351.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    W. Hahn Über Jacobische Polynome und zwei verwandte Polynomklassen,Math. Zeitschrift,39 (1935), 634–638.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    H. L. Krall, On derivatives of orthogonal polynomials,Bull. Amer. Math. Soc.,42 (1936), 867–870.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Á. Császár, Sur les polynômes orthogonaux classiques,Annales Univ. Sci. Budapest, Sectio Math.,1 (1958), 33–39.MathSciNetMATHGoogle Scholar
  8. [8]
    E. Egerváry andP. Turán, Notes on interpolation. V,Acta Math. Acad. Sci. Hungar.,9 (1959), 259–267.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    E. Egerváry andP. Turán, Notes on interpolation. VI,Acta Math. Acad. Sci. Hungar.,10 (1959), 55–62.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    J. Balázs, Megjegyzések a stabil interpolációról,Matematikai Lapok,11 (1960), 280–293 (in Hungarian).Google Scholar
  11. [11]
    I. Joó, Stable interpolation on an infinite interval,Acta Math. Acad. Sci. Hungar.,25 (1974), 147–157.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    G. Szegő,Orthogonal Polynomials, Amer. Math. Soc. Coll. Publ. (New York, 1959).MATHGoogle Scholar
  13. [13]
    G. Freud,Orthogonale Polynome, Akadémiai Kiadó (Budapest), Birkhäuser-Verl. (Basel), 1969.CrossRefMATHGoogle Scholar
  14. [14]
    Ch. Snow,Hypergeometric and Legendre Functions with Applications to Integral Equations of Potential Theory (Washington, N. B. of Standards, 1952).MATHGoogle Scholar

Copyright information

© Akadémiai Kiadó 1975

Authors and Affiliations

  • I. Joó
    • 1
  1. 1.Department II for AnalysisEötvös Loránd UniversityBudapestHungary

Personalised recommendations