Advertisement

Linear problems in combinatorial number theory

  • J. Komlós
  • M. Sulyok
  • E. Szemerédi
Article

Keywords

Positive Integer Prime Number Linear Problem Arithmetic Progression Invariant Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Halberstam andK. F. Roth,Sequences. Vol. I (Oxford, Clarendon Press, 1966).MATHGoogle Scholar
  2. [2]
    K. F. Roth, On certain sets of integers, II,J. London Math. Soc.,29 (1954), 20–26.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    F. A. Behrend, On sets of integers which contain no three terms in arithmetical progression.Proc. Nat. Acad. Sci. USA,28 (1942), 561–563.MathSciNetCrossRefGoogle Scholar
  4. [4]
    E. Szemerédi, On sets of integers containing no four elements in arithmetic progression,Acta Math. Acad. Sci. Hungar.,20 (1969), 89–104.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    E. Szemerédi, On sets of integers containing nok elements in artihmetic progression,Acta Arithmetica (to appear).Google Scholar
  6. [6]
    J. Komlós, M. Sulyok andE. Szemerédi, A lemma of combinatorial number theory,Matematikai Lapok (to appear).Google Scholar

Copyright information

© Akadémiai Kiadó 1975

Authors and Affiliations

  • J. Komlós
    • 1
  • M. Sulyok
    • 1
  • E. Szemerédi
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations