On some problems of P. Turán

  • P. Vértesi


Acta Math Orthogonal Polynomial Legendre Polynomial Jacobi Polynomial Lagrange Interpolation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Faber, Über die interpolatorische Darstellung stetiger Funktionen,Jahr. D. Math. Verein. 23 (1914), 194–210.Google Scholar
  2. [2]
    P. Erdös, P. Turán, On the role of the Lebesque functions in the theory of the Lagrange interpolation,Acta Math. Acad. Sci. Hungar.,6 (1955), 47–65.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    G. Fejér, Die Abschätzungen eines Polynomes,Math. Zeitschrift,32 (1930), 426–457.MATHCrossRefGoogle Scholar
  4. [4]
    G. Grünwald, On the theory of interpolation,Acta Math.,75 (1942), 219–245.CrossRefGoogle Scholar
  5. [5]
    P. Turán, On some unsolved problems in approximation theory,Mat. Lapok,25 (1974), 21–75. (in Hungarian).MathSciNetGoogle Scholar
  6. [6]
    L. Fejér, Über Interpolation,Göttinger Nachrichten (1916), 66–91.Google Scholar
  7. [7]
    G. Szegő,Orthogonal Polynomials, AMS Coll. Publ. Vol. XXIII (New York, 1959).Google Scholar
  8. [8]
    P. Vértesi, Contribution to theory of interpolation,Acta Math. Acad. Sci. Hungar.,29 (1977), 165–176.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    P. Vértesl, Comparison of Lagrange- and Hermite-Fejér interpolation,Acta Math. Acad. Sci. Hungar.,28 (1976), 349–357.MathSciNetCrossRefGoogle Scholar
  10. [10]
    G. I. Natanson, Two-sided estimate for the Lebesgue-function of the Lagrange interpolation with Jacobi nodes,Izv. Vyss Ucebn. Zaved. Matematika,11 (1967), 67–74 (in Russian).MathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó 1977

Authors and Affiliations

  • P. Vértesi
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapest

Personalised recommendations