On some problems of P. Turán

  • P. Vértesi


Acta Math Orthogonal Polynomial Legendre Polynomial Jacobi Polynomial Lagrange Interpolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Faber, Über die interpolatorische Darstellung stetiger Funktionen,Jahr. D. Math. Verein. 23 (1914), 194–210.Google Scholar
  2. [2]
    P. Erdös, P. Turán, On the role of the Lebesque functions in the theory of the Lagrange interpolation,Acta Math. Acad. Sci. Hungar.,6 (1955), 47–65.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    G. Fejér, Die Abschätzungen eines Polynomes,Math. Zeitschrift,32 (1930), 426–457.MATHCrossRefGoogle Scholar
  4. [4]
    G. Grünwald, On the theory of interpolation,Acta Math.,75 (1942), 219–245.CrossRefGoogle Scholar
  5. [5]
    P. Turán, On some unsolved problems in approximation theory,Mat. Lapok,25 (1974), 21–75. (in Hungarian).MathSciNetGoogle Scholar
  6. [6]
    L. Fejér, Über Interpolation,Göttinger Nachrichten (1916), 66–91.Google Scholar
  7. [7]
    G. Szegő,Orthogonal Polynomials, AMS Coll. Publ. Vol. XXIII (New York, 1959).Google Scholar
  8. [8]
    P. Vértesi, Contribution to theory of interpolation,Acta Math. Acad. Sci. Hungar.,29 (1977), 165–176.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    P. Vértesl, Comparison of Lagrange- and Hermite-Fejér interpolation,Acta Math. Acad. Sci. Hungar.,28 (1976), 349–357.MathSciNetCrossRefGoogle Scholar
  10. [10]
    G. I. Natanson, Two-sided estimate for the Lebesgue-function of the Lagrange interpolation with Jacobi nodes,Izv. Vyss Ucebn. Zaved. Matematika,11 (1967), 67–74 (in Russian).MathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó 1977

Authors and Affiliations

  • P. Vértesi
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapest

Personalised recommendations