Geometric & Functional Analysis GAFA

, Volume 5, Issue 3, pp 604–618 | Cite as

Complex contact structures and the first eigenvalue of the dirac operator on Kähler manifolds

  • K. -D. Kirchberg
  • U. Semmelmann
Article

Abstract

In this paper Kählerian Killing spinors on manifolds of complex dimensionm=4l+3 are constructed. The construction is based on a theorem which states that a closed Kähler Einstein manifold of complex dimension 4l+3 and positive scalar curvature admits a Kählerian Killing spinor if and only if there is a complex (2l+1)-contact structure. In particular, any complex contact structure in the usual sense gives rise to such a generalized contact structure. Using this, new examples of Kählerian Killing spinors are obtained.

Keywords

Scalar Curvature Dirac Operator Contact Structure Complex Dimension Usual Sense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABoSh]M.F. Atiyah, B. Bott, A. Shapiro, Clifford modules, Topology 3 (1964), 3–38.Google Scholar
  2. [B]W.M. Boothby, Homogeneous complex contact manifolds, Proc. Symp. Pure Math. 3 (1961), 144–154.Google Scholar
  3. [CFG]M. Cahen, A. Frank, S. Gutt, Spectrum of the Dirac operator on complex projective spaceP 2q−1(ℂ) Letters in Mathematical Physics 18 (1989), 165–176.Google Scholar
  4. [FrK]Th. Friedrich, I. Kath, Compact seven-dimensional manifolds with Killing spinors, Comm. Math. Phys. 133 (1990), 543–561.Google Scholar
  5. [Ki1]K.-D. Kirchberg, An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature. Ann. Global Anal. Geom. 4 (1986), 291–325.Google Scholar
  6. [Ki2]K.-D. Kirchberg, Compact six-dimensional Kähler spin manifolds of positive scalar curvature with smallest possible first eigenvalue of the Dirac operator. Math. Ann. 282 (1988), 157–176.Google Scholar
  7. [Ki3]K.-D. Kirchberg, Killing spinors on Kähler manifolds, Ann. Global Anal. Geom. 11 (1993), 141–164.Google Scholar
  8. [Ki4]K.-D. Kirchberg, Some further properties of Kälerian twistor spinors, Math. Nachr. 163 (1993), 229–255.Google Scholar
  9. [KoO]S. Kobayashi, T. Ochiai, Characterization of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ. 13:1 (1973), 31–47.Google Scholar
  10. [Ko]S. Kobayashi, Remarks on complex contact manifolds, Proc. Amer. Math. Soc. 10 (1959), 164–167.Google Scholar
  11. [M]A. Moroianu, La premiere valeur propre de l'operateur de Dirac sur les varietes kähleriennes compactes, to appear in Comptes-Rendus de l'Academie des Sciences de Paris.Google Scholar
  12. [MSem]A. Moroianu, U. Semmelmann, Kählerian Killing Spinors, Complex Contact Structures and Twistor Spaces, Preprint 148 of E. Schrödinger Institute, Vienna, 1994.Google Scholar
  13. [S]S.M. Salamon, Quaternionic Kähler manifolds, Invent. Math. 67 (1982), 143–171.Google Scholar
  14. [SeSem]S. Seifarth, U. Semmelmann, The spectrum of the Dirac operator on the complex projective spaceP 2q−1(ℂ), preprint, SFB 288, 1993.Google Scholar
  15. [W]J.A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. and Mech. 14 (1965), 1033–1047.Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • K. -D. Kirchberg
    • 1
  • U. Semmelmann
    • 2
  1. 1.Institut für Reine Mathematik (SFB 288)Humboldt-Universität zu BerlinBerlinGermany
  2. 2.Mathematisches InstitutUniversität BonnBonnGermany

Personalised recommendations