Advertisement

Geometric & Functional Analysis GAFA

, Volume 2, Issue 1, pp 29–89 | Cite as

TheL2 structure of moduli spaces of Einstein metrics on 4-manifolds

  • M. T. Anderson
Article

Keywords

Modulus Space Einstein Metrics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Anderson, Ricci curvature bounds and Einstein metrics on compact manifolds, Jour. Amer. Math. Soc. 2 (1989), 455–490.Google Scholar
  2. [2]
    M. Anderson, Moduli spaces of Einstein metrics on 4-manifolds, Research Announ., Bull. Amer. Math. Soc. 21, No.2 (October 1989), 163–167.Google Scholar
  3. [3]
    M. Anderson, J. Cheeger, Diffeomorphism finiteness for manifolds with Ricci curvature andL n/2 norm of curvature bounded, Geometric and Functional Analysis 1, No. 3, (1991), 231–252.Google Scholar
  4. [4]
    S. Bando, Bubbling out of Einstein manifolds, Tohoku Math. Jour. 42, No. 2 (1990), 205–216; and 42, No. 4, 587–588.Google Scholar
  5. [5]
    S. Bando, A. Kasue, H. Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math. 97 (1989), 313–349.Google Scholar
  6. [6]
    W. Barth, C. Peters, A. Van de Ven, Compact Complex Surfaces, Ergebnisse der Math. 3. Folge, Band 4, Springer Verlag, New York (1984).Google Scholar
  7. [7]
    A. Beauville, et al., Geometrie des surfaces K3: Modules et Periodes, Asterisque 126, Soc. Math. France (1983).Google Scholar
  8. [8]
    P. Berard, G. Besson, S. Gallot, Sur une inequalite isoperimetrique qui generalise celle de P. Levy-Gromov, Inventiones Math. 80 (1985), 295–308.Google Scholar
  9. [9]
    M. Berger, Une borne inferieure pour le volume d'une variete Riemannienne en fonction du rayon d'injectivite, Ann. Inst. Fourier, Grenoble, 30 (1980), 259–265.Google Scholar
  10. [10]
    L. Bers, Finite dimensional Teichmuller spaces and generalizations, Proc. Symp. Pure Math. 39:I (1983), 115–156.Google Scholar
  11. [11]
    A. Besse, Geometrie Riemannienne en Dimension 4, Cedic-Fernand Nathan Paris (1981).Google Scholar
  12. [12]
    A. Besse, Einstein Manifolds, Ergebnisse der Math., 3. Folge, Band 10, Springer Verlag, New York (1987).Google Scholar
  13. [13]
    D. Burns, M. Rapaport, On the Torelli problem for Kãhlerian K3 surfaces, Ann. Sci. Ecole Norm. Sup. IV, Serie 8 (1975), 235–274.Google Scholar
  14. [14]
    D. Burns, J. Wahl, Local contributions to global deformation of surfaces, Invent. Math. 26 (1974), 57–88.Google Scholar
  15. [15]
    J. Cheeger, M. Gromov, Collapsing Riemannian manifolds while keeping their curvature bounded, II (II), Jour. Diff. Geom. 23 (1986), 309–346; and 32 (1990), 269–298.Google Scholar
  16. [16]
    J. Cheeger, M. Gromov, Chopping Riemannian manifolds, to appear in Do-Carmo Volume, Pitman Press.Google Scholar
  17. [17]
    C. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. Ecole Norm. Sup. IV, Serie 13 (1980), 419–435.Google Scholar
  18. [18]
    D. Ebin, The manifold of Riemannian metrics, Proc. Symp. Pure Math. 15, Amer. Math. Soc. (1970), 11–40.Google Scholar
  19. [19]
    T. Eguchi, P. Gilkey, A. Hanson, Gravitation, Gauge Theories and Differential Geometry, Physical Reports 66 (1980), 213–393.Google Scholar
  20. [20]
    D. Freed, D. Groisser, The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group, Mich. Math. Jour. 36 (1989), 323–344.Google Scholar
  21. [21]
    H. Federer, Geometric Measure Theory, Springer Verlag, New York (1969).Google Scholar
  22. [22]
    A. Fujiki, Kählerian normal complex spaces, Tohoku Math. Jour. 2nd Series 35 (1983), 101–118.Google Scholar
  23. [23]
    G. Gibbons, S. Hawking, Gravitational multi-instantons, Phys. Lett. B 78 (1978), 430–432.Google Scholar
  24. [24]
    M. Gromov, Structures Metriques pour les Varietes Riemanniennes, Cedic-Fernand Nathan, (1981).Google Scholar
  25. [25]
    M. Gromov, Paul Levy's isoperimetric inequality, Preprint, IHES (1979).Google Scholar
  26. [26]
    N. Hitchin, Polygons and gravitons, Math. Proc. Camb. Phil. Soc. 85 (1979), 465–476.Google Scholar
  27. [27]
    R. Kobayashi, Einstein-KählerV-metrics on open SatakeV-surfaces with isolated quotient singularities, Math. Ann. 272 (1985), 385–398.Google Scholar
  28. [28]
    R. Kobayashi, A. Todorov, Polarized period map for generalized K3 surfaces and the moduli of Einstein metrics, Tohoku Math. Jour. 39 (1987), 341–363.Google Scholar
  29. [29]
    N. Koiso, Rigidity and infinitesimal deformability of Einstein metrics, Osaka Jour. Math. 17 (1982), 643–668.Google Scholar
  30. [30]
    P. Kronheimer, The construction of ALE spaces as hyperkähler quotients, Jour. Diff. Geom. 29 (1989), 465–483.Google Scholar
  31. [31]
    D. Morrison, Some remarks on the moduli of K3 surfaces, Classification of Algebraic and Analytic Manifolds, Progress in Math., Birkhäuser Verlag 39 (1983), 303–332.Google Scholar
  32. [32]
    H. Nakajima, Hausdorff convergence of Einstein 4-manifolds, J. Fac. Sci. Univ. Tokyo 35 (1988), 411–424.Google Scholar
  33. [33]
    W. Rudin, Real and Complex Analysis, McGraw Hill, New York, (1977).Google Scholar
  34. [34]
    W. Thurston, The Geometry and Topology of 3-manifolds, (Preprint, Princeton).Google Scholar
  35. [35]
    G. Tian, Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, Mathematical Aspects of String Theory (ed. S.-T. Yau), World Scientific, Singapore (1987), 629–646.Google Scholar
  36. [36]
    G. Tian, On Calabi's conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), 101–172.Google Scholar
  37. [37]
    G. Tian, S.-T. Yau, Kähler-Einstein metrics on complex surfaces withc 1>0, Comm. Math. Phys. 42 (1987), 175–203.Google Scholar
  38. [38]
    A. Todorov, Applications of the Kähler-Einstein-Calabi-Yau metric to moduli of K3 surfaces, Inventiones Math. 61 (1980), 251–265.Google Scholar
  39. [39]
    H. Tsuji, Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type, Math. Annalen 281 (1988), 123–133.Google Scholar
  40. [40]
    H. Wu, On manifolds of partially positive curvature, Indiana Univ. Math. Jour. 36, No.3 (1987), 525–548.Google Scholar
  41. [41]
    S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampere equation, Comm. Pure and Appl. Math. 31 (1978), 339–441.Google Scholar
  42. [42]
    S.-T. Yau, Survey lecture, Seminar on Differential Geometry, Ann. of Math. Studies 102 (1982).Google Scholar

Copyright information

© Birkhäuser Verlag 1992

Authors and Affiliations

  • M. T. Anderson
    • 1
  1. 1.Department of MathematicsS.U.N.Y. at Stony BrookStony BrookUSA

Personalised recommendations