Skip to main content

Combings of semidirect products and 3-manifold groups

Abstract

IfG is a finitely generated group that is abelian or word-hyperbolic andH is an asynchronously combable group then every split extension ofG byH is asynchronously combable. The fundamental group of any compact 3-manifold that satisfies the geometrization conjecture is asynchronously combable. Every split extension of a word-hyperbolic group by an asynchronously automatic group is asynchronously automatic.

This is a preview of subscription content, access via your institution.

References

  1. [BGSS]G. Baumslag, S. Gersten, M. Shapiro, H. Short, Automatic groups and amalgams, Jour. of Pure and Appl. Algebra 76 (1991), 229–316.

    Google Scholar 

  2. [BF]M. Bestvina, M. Feighn, A combination theorem for hyperbolic groups, Jour. Diff. Geom., to appear.

  3. [B]M. R. Bridson, On the geometry of normal forms in discrete groups, Proc. LMS, to appear.

  4. [BG]M. R. Bridson, S. M. Gersten, The optimal isoperimetric inequality for ℤn ⋊ ℤ preprint, Princeton University, July 1992.

  5. [CEHLPT]J. W. Cannon, D. B. A. Epstein, D. F. Holt, S. V. F. Levy, M. S. Paterson, W. P. Thurston, Word Processing in Groups, Jones and Bartlett, Boston MA., 1992.

    Google Scholar 

  6. [G1]S. M. Gersten, Isodiametric and isoperimetric inequalities in group extensions, preprint, University of Utah, April 1991.

  7. [G2]S. M. Gersten Finiteness properties for asynchronously automatic groups, reprint, University of Utah, June 1992.

  8. [GH]E. Ghys, P. de la Harpe (Eds., Sur les Groupes Hyperboliques d'après Mikhael Gromov, Progress in Mathematics 83, Birkhäuser, Boston MA 1990.

    Google Scholar 

  9. [Gr]M. Gromov, Hyperbolic groups, in “Essays in Group Theory” (S.M. Gersten, ed.), 75–263, MSRI Publ., 8, Springer Verlag, New York, 1987.

    Google Scholar 

  10. [HU]J. E. Hopcroft J. D. Ullman Introduction to Auotomata Theory, Languages and Computation, Addison Wesley, Reading MA., 1979.

    Google Scholar 

  11. [LS]R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin, 1977.

    Google Scholar 

  12. [MT]M. L. Mihalik, T. S. Tschantz, Tame combings and the QSF condition for groups, preprint, Vanderbilt University, March 1992.

  13. [S]G. P. Scott, The geometry of 3-manifolds, Bull. LMS 15 (1983), 401–487.

    Google Scholar 

  14. [Sh]M. Shapiro, Automatic structure and graphs of groups, in “Topology '90”, Proceedings of the research semester in low-dimensional topology at Ohio State, de Gruyper Verlag, to appear.

  15. [T1]W. P. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. AMS 6 (1982), 357–381.

    Google Scholar 

  16. [T2]W. P. Thurston, The Geometry and Topology of 3-manifolds, preprint, Princeton University, 1991.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bridson, M.R. Combings of semidirect products and 3-manifold groups. Geometric and Functional Analysis 3, 263–278 (1993). https://doi.org/10.1007/BF01895689

Download citation

1991 Mathematics Subject Classification

  • 20F32
  • 20F34
  • 57M50