Applied Mathematics and Mechanics

, Volume 6, Issue 1, pp 87–92 | Cite as

On the assumption of Saint-Venant's problem

  • Wang Min-zhong


In this paper we obtain uniquely the solution of Saint-Venant's problem under the assumption of\(\frac{{\partial ^m }}{{\partial z^m }} \sigma _z = 0 (m \geqslant 2)\) for noncircular prismatic bars.


Mathematical Modeling Industrial Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    St. Venant A.-J.-C. B., De: Mémoire sur la torsion des prismes. ..., Mém Divers, Savants Acad. Sci. Paris14 (1855), 233–560.Google Scholar
  2. [2]
    Clebsch, A.,Théorie de l'élasticité des corps solides, Paris (1883).Google Scholar
  3. [3]
    Voigt, W., Theoretische studien über die Elasticitätsverhaltnisse der Krystalle.Abh. Ges. Wiss. Göttingen34 (1887), 100 pp.Google Scholar
  4. [4]
    Love, A. E. H.,A Treatise on the Mathematical Theory of Elasticity, 4th Ed., Cambridge (1927).Google Scholar
  5. [5]
    Goodier, J. N., The characteristic property of Saint-Venant's solutions for the torsion and bending of an elastic cylinder,Phil. Mag.,23, 7 (1937), 186–190.Google Scholar
  6. [6]
    Chien, W. C., The physical assumption of Saint-Venant's torsion problem,Acta Physica Sinica (Peking)9 (1953), 215–220.Google Scholar
  7. [7]
    Wang, M. Z., Weaker Assumption of Saint-Venant's solution of Equilibrium of a Bar,Acta Mechanica Sinica (Peking),Special Issue (1981), 275–280.Google Scholar
  8. [8]
    ourant, R. and D. Hilbert,Methods of Mathematical Physics, Vol. II, (1962), New York: Interscience.Google Scholar

Copyright information

© Shanghai University of Technology 1985

Authors and Affiliations

  • Wang Min-zhong
    • 1
  1. 1.Department of mechanicsPeking UniversityBeijing

Personalised recommendations