Applied Mathematics and Mechanics

, Volume 6, Issue 1, pp 87–92 | Cite as

On the assumption of Saint-Venant's problem

  • Wang Min-zhong
Article
  • 18 Downloads

Abstract

In this paper we obtain uniquely the solution of Saint-Venant's problem under the assumption of\(\frac{{\partial ^m }}{{\partial z^m }} \sigma _z = 0 (m \geqslant 2)\) for noncircular prismatic bars.

Keywords

Mathematical Modeling Industrial Mathematic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    St. Venant A.-J.-C. B., De: Mémoire sur la torsion des prismes. ..., Mém Divers, Savants Acad. Sci. Paris14 (1855), 233–560.Google Scholar
  2. [2]
    Clebsch, A.,Théorie de l'élasticité des corps solides, Paris (1883).Google Scholar
  3. [3]
    Voigt, W., Theoretische studien über die Elasticitätsverhaltnisse der Krystalle.Abh. Ges. Wiss. Göttingen34 (1887), 100 pp.Google Scholar
  4. [4]
    Love, A. E. H.,A Treatise on the Mathematical Theory of Elasticity, 4th Ed., Cambridge (1927).Google Scholar
  5. [5]
    Goodier, J. N., The characteristic property of Saint-Venant's solutions for the torsion and bending of an elastic cylinder,Phil. Mag.,23, 7 (1937), 186–190.Google Scholar
  6. [6]
    Chien, W. C., The physical assumption of Saint-Venant's torsion problem,Acta Physica Sinica (Peking)9 (1953), 215–220.Google Scholar
  7. [7]
    Wang, M. Z., Weaker Assumption of Saint-Venant's solution of Equilibrium of a Bar,Acta Mechanica Sinica (Peking),Special Issue (1981), 275–280.Google Scholar
  8. [8]
    ourant, R. and D. Hilbert,Methods of Mathematical Physics, Vol. II, (1962), New York: Interscience.Google Scholar

Copyright information

© Shanghai University of Technology 1985

Authors and Affiliations

  • Wang Min-zhong
    • 1
  1. 1.Department of mechanicsPeking UniversityBeijing

Personalised recommendations