Geometric & Functional Analysis GAFA

, Volume 5, Issue 2, pp 364–386 | Cite as

Local non-squeezing theorems and stability

  • F. Lalonde
  • D. McDuff
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BP]M. Bialy, L. Polterovich, Geodesics of Hofer's metric on the group of Hamiltonian diffeomorphisms, preprint, Tel Aviv, 1994.Google Scholar
  2. [E1]I. Ekeland, An index theory for periodic solutions of convex Hamiltonian systems, Proc. Symp. Pure Math. 45 (1986), 395–423.Google Scholar
  3. [E2]I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Ergebnisse Math 19, Springer-Verlag, Berlin (1989).Google Scholar
  4. [FH]A. Floer, H. Hofer, Symplectic homology I, preprint, 1992.Google Scholar
  5. [FHW]A. Floer, H. Hofer, K. Wysocki, Applications of symplectic homology, preprint, 1993.Google Scholar
  6. [G]M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347.Google Scholar
  7. [LM1]F. Lalonde, D. McDuff, The geometry of symplectic energy, Annals of Math. to appear.Google Scholar
  8. [LM2]F. Lalonde, D. McDuff, Hofer'sL -geometry: energy and stability of Hamiltonian flows I, preprint, 1994.Google Scholar
  9. [LM3]F. Lalonde, D. McDuff, Hofer'sL -geometry: energy and stability of Hamiltonian flows II, preprint, 1994.Google Scholar
  10. [LM4]F. Lalonde, D. McDuff, Homotopy properties of stable positive paths and bifurcations of eigenvalues, preprint, 1994.Google Scholar
  11. [U]I. Ustilovsky, Conjugate points on geodesics of Hofer's metric, preprint, Tel Aviv, 1994.Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • F. Lalonde
    • 1
  • D. McDuff
    • 2
  1. 1.Université du QuébecMontréalCanada
  2. 2.State University of New YorkStony BrookUSA

Personalised recommendations