Convergence of lacunary trigonometric interpolation on equidistant nodes

  • S. Riemenschneider
  • A. Sharma
  • P. W. Smith
Article

Keywords

Trigonometric Interpolation Equidistant Node 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. S. Cavaretta Jr., A. Sharma andR. S. Varga, Lacunary trigonometric interpolation on equidistant nodes. InQuantitative Approxcimation, R. A. DeVore, K. Scherer eds., Academic Press, (New York, 1980), 63–80.Google Scholar
  2. [2]
    O. A. Čuprigin, On trigonometric (1, 1, 2,...,r−2,r) interpolation, (Russ.)Vesei. Akad. Nauk BSSR Ser Fiz. Math. Nauk,1 (1965), 129–131.Google Scholar
  3. [3]
    F. R. Gantmacher andM. G. Krein,Oscillatory matrices and kernels and small vibrations of mechanical systems, 2nd ed. (Moscow).Google Scholar
  4. [4]
    O. Kiš, Remarks on interpolation (Russian),Acta Math. Acad. Sci Hungar.,11 (1960), 49–64.Google Scholar
  5. [5]
    O. Kiš, Remarks on the error of trigonometric (0, 2) interpolation,Acta Math. Acas. Sci. Hungan.,22 (1971), 81–84.Google Scholar
  6. [6]
    I. P. Natanson,Constructive Function Theory, Frederick Ungar Publishing Co. (New York, 1964).Google Scholar
  7. [7]
    S. D. Riemenscheneider, P. W. Smith andA. Sharma, Lacunary trigonometric interpolation: convergence. InApproximation Theory III, E. W. Cheney ed., Academic Press (New York, 1980), 741–746.Google Scholar
  8. [8]
    S. D. Riemenschneider andA. Sharma, Brikhoff interpolation at then-th roots of unity: Convergence,Canad. J. Math.,33 (1981), 362–371.Google Scholar
  9. [9]
    A. Sharma andA. K. Varma, Trigonometric interpolation,Duke Math. J. 32 (1965), 341–358.Google Scholar
  10. [10]
    A. Sharma andA. K. Varma, Trigonometric interpolation: (0, 2, 3) case,Ann. Polon. Math.,21 (1968), 51–58.Google Scholar
  11. [11]
    A. Sharma, P. W. Smith andJ. Tzimbalario, Polynomial interpolation in roots of unity with applications,Proc. Conference on Approx. Theory (Sopot, Poland).Google Scholar
  12. [12]
    A. K. Varma, Trigonometric interpolation,J. Math. Anal. Appl.,28 (1969), 652–659.Google Scholar
  13. [13]
    A. K. Varma, Some remarks on trigonometric interpolation,Israel J. Math.,7 (1969), 177–185.Google Scholar
  14. [14]
    A. K. Varma, Hermite-Birkhoff trigonometric interpolation in the (0, 1, 2,M) case,J. Australian Math. Soc.,15 (1973), 228–242.Google Scholar
  15. [15]
    P. O. H. Vèrtesi, On the convergence of trigonometric (0,M) interpolations,Acta. Math. Acad. Sci. Hungar.,22 (1971), 117–126.Google Scholar
  16. [16]
    E. O. Zeeì, Trigonometric (0,p, q) interpolation (Russian),Izv. Vyss. Uceb. Zaved. Matematik,3(94) (1970), 27–35.Google Scholar
  17. [17]
    E. O. Zeeì, On multiple trigonometric interpolation (Russian),Izv. Vyss. Uceb. Zaved. Matematika,3(142) (1974), 43–45.Google Scholar

Copyright information

© Akadémiai Kiadó 1982

Authors and Affiliations

  • S. Riemenschneider
    • 1
  • A. Sharma
    • 1
  • P. W. Smith
    • 2
  1. 1.Department of MathematicsUniversity of AlbertaEdmontonCanada
  2. 2.Department of MathematicsOld Dominion UniversityNorfolkU.S.A.

Personalised recommendations