Convergence of lacunary trigonometric interpolation on equidistant nodes

  • S. Riemenschneider
  • A. Sharma
  • P. W. Smith


Trigonometric Interpolation Equidistant Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. S. Cavaretta Jr., A. Sharma andR. S. Varga, Lacunary trigonometric interpolation on equidistant nodes. InQuantitative Approxcimation, R. A. DeVore, K. Scherer eds., Academic Press, (New York, 1980), 63–80.Google Scholar
  2. [2]
    O. A. Čuprigin, On trigonometric (1, 1, 2,...,r−2,r) interpolation, (Russ.)Vesei. Akad. Nauk BSSR Ser Fiz. Math. Nauk,1 (1965), 129–131.Google Scholar
  3. [3]
    F. R. Gantmacher andM. G. Krein,Oscillatory matrices and kernels and small vibrations of mechanical systems, 2nd ed. (Moscow).Google Scholar
  4. [4]
    O. Kiš, Remarks on interpolation (Russian),Acta Math. Acad. Sci Hungar.,11 (1960), 49–64.Google Scholar
  5. [5]
    O. Kiš, Remarks on the error of trigonometric (0, 2) interpolation,Acta Math. Acas. Sci. Hungan.,22 (1971), 81–84.Google Scholar
  6. [6]
    I. P. Natanson,Constructive Function Theory, Frederick Ungar Publishing Co. (New York, 1964).Google Scholar
  7. [7]
    S. D. Riemenscheneider, P. W. Smith andA. Sharma, Lacunary trigonometric interpolation: convergence. InApproximation Theory III, E. W. Cheney ed., Academic Press (New York, 1980), 741–746.Google Scholar
  8. [8]
    S. D. Riemenschneider andA. Sharma, Brikhoff interpolation at then-th roots of unity: Convergence,Canad. J. Math.,33 (1981), 362–371.Google Scholar
  9. [9]
    A. Sharma andA. K. Varma, Trigonometric interpolation,Duke Math. J. 32 (1965), 341–358.Google Scholar
  10. [10]
    A. Sharma andA. K. Varma, Trigonometric interpolation: (0, 2, 3) case,Ann. Polon. Math.,21 (1968), 51–58.Google Scholar
  11. [11]
    A. Sharma, P. W. Smith andJ. Tzimbalario, Polynomial interpolation in roots of unity with applications,Proc. Conference on Approx. Theory (Sopot, Poland).Google Scholar
  12. [12]
    A. K. Varma, Trigonometric interpolation,J. Math. Anal. Appl.,28 (1969), 652–659.Google Scholar
  13. [13]
    A. K. Varma, Some remarks on trigonometric interpolation,Israel J. Math.,7 (1969), 177–185.Google Scholar
  14. [14]
    A. K. Varma, Hermite-Birkhoff trigonometric interpolation in the (0, 1, 2,M) case,J. Australian Math. Soc.,15 (1973), 228–242.Google Scholar
  15. [15]
    P. O. H. Vèrtesi, On the convergence of trigonometric (0,M) interpolations,Acta. Math. Acad. Sci. Hungar.,22 (1971), 117–126.Google Scholar
  16. [16]
    E. O. Zeeì, Trigonometric (0,p, q) interpolation (Russian),Izv. Vyss. Uceb. Zaved. Matematik,3(94) (1970), 27–35.Google Scholar
  17. [17]
    E. O. Zeeì, On multiple trigonometric interpolation (Russian),Izv. Vyss. Uceb. Zaved. Matematika,3(142) (1974), 43–45.Google Scholar

Copyright information

© Akadémiai Kiadó 1982

Authors and Affiliations

  • S. Riemenschneider
    • 1
  • A. Sharma
    • 1
  • P. W. Smith
    • 2
  1. 1.Department of MathematicsUniversity of AlbertaEdmontonCanada
  2. 2.Department of MathematicsOld Dominion UniversityNorfolkU.S.A.

Personalised recommendations