Acta Mathematica Academiae Scientiarum Hungarica

, Volume 37, Issue 4, pp 433–443 | Cite as

Local spectral theory



Spectral Theory Local Spectral Theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Achieser andI. Glasmann,Theorie der linearen Operatoren im Hilbert-Raum, Akademie-Verlag (Berlin, 1954).Google Scholar
  2. [2]
    I. Bacalu,S-decomposable operators in Banach spaces,Rev. Roum. Math. Pures Appl.,20 (1975), 1101–1107.Google Scholar
  3. [3]
    I. Colojoară andC. Foia§,Theory of generalized spectral operators, Gordon and Breach (New York, 1968).Google Scholar
  4. [4]
    N. Dunford andJ. Schwartz,Linear operators. Part III: Spectral operators. Wiley-Interscience (New York, 1971).Google Scholar
  5. [5]
    T. Kato,Perturbation theory for linear operators, Springer (New York, 1966).Google Scholar
  6. [6]
    M. Krasnoselskiî, On selfadjoint extensions of Hermitian operators,Ukrain. Mat. Ž.,1 (1) (1949), 21–38 (Russian).Google Scholar
  7. [7]
    B. Nagy, ClosedS-decomposable operators,Annales Univ. Sci. Budapest, Sectio Math.,22–23 (1979–1980), 143–149.Google Scholar
  8. [8]
    A. Plessner,Spectral theory of linear operators, Nauka (Moscow, 1965), (Russian).Google Scholar
  9. [9]
    F.-H. Vasilescu, Residually decomposable operators in Banach spaces,Tohoku Math. J.,21, (1969), 509–522.Google Scholar
  10. [10]
    F.-H. Vasilescu, Residual properties for closed operators on Fréchet spaces,Illinois J. Math. 15 (1971), 377–386.Google Scholar
  11. [11]
    F.-H. Vasilescu,Multidimensional analytic functional calculus. Editura Acad. Rep. Soc. Romania (Bucharest, 1979) (Romanian).Google Scholar

Copyright information

© Akadémiai Kiadó 1981

Authors and Affiliations

  • B. Nagy
    • 1
  1. 1.Department of MathematicsFaculty of Chemical EngineeringBudapestHungary

Personalised recommendations