Advertisement

Direct theorems in the theory of approximation

  • G. Sunouchi
Article

Keywords

Direct Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Alexits, Sur l'ordre de grandeur de l'approximation d'une fonction par les moyennes de sa série de Fourier,Mat. Fiz. Lapok,48 (1941), pp. 410–422.Google Scholar
  2. [2]
    I. M. Gelfand andG. E. Silov,Generalized functions, Vol. 1 (Academic Press, 1964).Google Scholar
  3. [3]
    F. Harsiladze, Classes of saturation for certain methods of summability,Doklady Akad. Nauk USSR,122 (1958), pp. 352–355.Google Scholar
  4. [4]
    Y. Katznelson,An introduction to harmonic analysis (John Wiley and Sons. Inc., 1968).Google Scholar
  5. [5]
    M. Kojima andG. Sunouchi, On the approximation and saturation by general singular integrals.Tohoku Math. Journ.,20 (1968), pp. 146–169.Google Scholar
  6. [6]
    I. P. Natanson, Saturation classes in the theory of singular integrals,Soviet Math.,5 (1964), pp. 1257–1260.Google Scholar
  7. [7]
    G. Sunouchi andC. Watari, On determination of the class of saturation in the theory of approximation of functions,Proc. Japan Acad.,34 (1958), pp. 477–481.Google Scholar
  8. [8]
    G. Sunouchi, Characterization of certain classes of functions,Tohoku Math. Journ.,14 (1962), pp. 127–134.Google Scholar
  9. [9]
    G. Sunouchi, Saturation in the theory of best approximationOn approximation theory ISNM,5 (Birkhäuser Verlag, 1964).Google Scholar
  10. [10]
    A. H. Tureckiî, On classes of saturation for certain methods of summation of Fourier series of continuous periodic functions,Uspehi Math. Nauk,15 (1960), pp. 149–156. (Amer. Math. Soc. Translation series 2, vol.26, pp. 263–272.)Google Scholar
  11. [11]
    A. H. Tureckiî, Saturation classes in the spaceC, Izvestia Akad. Nauk SSSR,25 (1961), pp. 411–442.Google Scholar

Copyright information

© Akadémiai Kiadó 1969

Authors and Affiliations

  • G. Sunouchi
    • 1
  1. 1.Mathematical InstituteTohoku UniversitySendaiJapan

Personalised recommendations