Advertisement

Metrika

, Volume 33, Issue 1, pp 93–109 | Cite as

Procedures to determine optimum two-stage sampling plans by attributes

  • B. F. Arnold
Publications

Summary

In order to compare two sampling plans we use the minimax regret principle, i.e. the minimax principle applied to regret functions. It is shown that among all two-stage sampling plans there exists an optimum sampling plan which can be computed with the aid of a procedure presented in this paper; furthermore another procedure is described how to obtain an approximately optimum two-stage sampling plan in a more direct way. Finally only those two-stage sampling plans are regarded which satisfy an additional condition; among these sampling plans an optimum one exists and is to be determined, too.

Keywords

Stochastic Process Probability Theory Economic Theory Additional Condition Sampling Plan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold BF (1984) Improvingk-stage sampling plans by attributes with the aid of (k+1)-stage sampling plans and an application to the casek=1. Statistics & Decisions 2:75–92Google Scholar
  2. Arnold BF (1985) Approximately optimum two-stage sampling plans. Metrika 32:293–314CrossRefGoogle Scholar
  3. Oruc M (1965) Über sequentielle Qualitätskontrolle. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 4:203–208CrossRefGoogle Scholar
  4. Uhlmann W (1969) Kostenoptimale Prüfpläne. Würzburg WienGoogle Scholar
  5. Uhlmann W (1982) Statistische Qualitätskontrolle. StuttgartGoogle Scholar
  6. Van der Waerden BL (1965) Sequentielle Qualitätskontrolle als Minimumproblem. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 4:187–202CrossRefGoogle Scholar

Copyright information

© Physica-Verlag 1986

Authors and Affiliations

  • B. F. Arnold
    • 1
  1. 1.Institut für Angewandte Mathematik und StatistikWürzburgFRG

Personalised recommendations