Advertisement

Operational results connected with some classical polynomials

  • S. K. Chatterjea
Article

Keywords

Operational Result Classical Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Krall andO. Frink, A new class of orthogonal polynomials: The Bessel polynomials'Trans. Amer. Math. Soc.,65 (1949), pp. 100–115.Google Scholar
  2. [2]
    L. Carlitz, A note on the Laguerre polynomials,Michigan Math. J.,7 (1960), pp. 219–223.Google Scholar
  3. [3]
    J. L. Burchnall, The Bessel polynomials,Canad. J. Math.,3 (1951), pp. 62–68.Google Scholar
  4. [4]
    R. P. Singh, Operational formulae for Jacobi and other polynomials,Rend. Sem. Mat. Univ. Padova,35 (1965), pp. 237–244.Google Scholar
  5. [5]
    S. K. Chatterjea, Operational formulae for certain classical polynomials. I,Quart. J. Math. (Oxford),14 (1963), pp. 241–246.Google Scholar
  6. [6]
    H. W. Gould andA. T. Hopper, Operational formulas connected with two generalizations of Hermite polynomials,Duke Math. J.,29 (1962), pp. 51–64.Google Scholar
  7. [7]
    S. K. Chatterjea, On a generalization of Laguerre polynomials,Rend. Sem. Math. Univ. Padova,34 (1964), pp. 180–190.Google Scholar
  8. [8]
    T. Chaundy,Differential Calculus (Oxford), p. 388.Google Scholar

Copyright information

© Akadémiai Kiadó 1968

Authors and Affiliations

  • S. K. Chatterjea
    • 1
  1. 1.CalcuttaIndia

Personalised recommendations