Operational results connected with some classical polynomials

  • S. K. Chatterjea
Article

Keywords

Operational Result Classical Polynomial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Krall andO. Frink, A new class of orthogonal polynomials: The Bessel polynomials'Trans. Amer. Math. Soc.,65 (1949), pp. 100–115.Google Scholar
  2. [2]
    L. Carlitz, A note on the Laguerre polynomials,Michigan Math. J.,7 (1960), pp. 219–223.Google Scholar
  3. [3]
    J. L. Burchnall, The Bessel polynomials,Canad. J. Math.,3 (1951), pp. 62–68.Google Scholar
  4. [4]
    R. P. Singh, Operational formulae for Jacobi and other polynomials,Rend. Sem. Mat. Univ. Padova,35 (1965), pp. 237–244.Google Scholar
  5. [5]
    S. K. Chatterjea, Operational formulae for certain classical polynomials. I,Quart. J. Math. (Oxford),14 (1963), pp. 241–246.Google Scholar
  6. [6]
    H. W. Gould andA. T. Hopper, Operational formulas connected with two generalizations of Hermite polynomials,Duke Math. J.,29 (1962), pp. 51–64.Google Scholar
  7. [7]
    S. K. Chatterjea, On a generalization of Laguerre polynomials,Rend. Sem. Math. Univ. Padova,34 (1964), pp. 180–190.Google Scholar
  8. [8]
    T. Chaundy,Differential Calculus (Oxford), p. 388.Google Scholar

Copyright information

© Akadémiai Kiadó 1968

Authors and Affiliations

  • S. K. Chatterjea
    • 1
  1. 1.CalcuttaIndia

Personalised recommendations