Advertisement

On the distribution of arithmetical functions

  • I. Kátai
Article

Keywords

Arithmetical Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. ErdősA. Wintner, Additive arithmetical functions and statistical independence,Amer. J. Math.,61 (1939), pp. 713–721.Google Scholar
  2. [2]
    H. Delange, Un theoréme sur les fonctions arithmetiques multiplicatives es ses applications,Ann. Sci. Ecole Norm. Sup.,78 (1961), pp. 1–29.Google Scholar
  3. [3]
    I. Kátai, On distribution of arithmetical functions on the set of prime plus one,Compositio Math. (under press).Google Scholar
  4. [4]
    A. SchinzelP. Erdős, Distributions of the values of some arithmetical functions,Acta Arithm.,6 (1961), pp. 473–485.Google Scholar
  5. [5]
    A. Rényi, On the density of certain sequences of integers,Publ. Inst. Math. Belgrad,8 (1955), pp. 157–162.Google Scholar
  6. [6]
    й. Кубилиус,Вероятносмные метогы в теории чисел, Гос. изд. Политической и Научной Литературы Литовской ССР (Вильнюс, 1962).Google Scholar
  7. [7]
    M. Tanaka, On the number of prime factors of integers I,Japan J. Math.,25 (1955), pp. 1–20.Google Scholar
  8. [8]
    K. Prachar,Primzahlverteilung (Springer Verlag, 1957).Google Scholar
  9. [9]
    C. Hooley, On the power free values of polynomials,Mathematika,14 (1967), pp. 21–26.Google Scholar
  10. [10]
    P. Turán, Über einige Verallgemeinerungen eines Satzes von Hardy and Ramanujan,J. London Math. Soc.,11 (1936), pp. 125–133.Google Scholar
  11. [11]
    Б. В. Левин—А. С. Фаинлеиб, Применение некоторых интегральных уравнений к вопросам теории чисел,Успехи Мат. Наук СССР,22 (135) (1967), pp. 119–197.Google Scholar
  12. [12]
    E. Bombieri, On the large sieve,Mathematika,12 (1965), pp. 201–225.Google Scholar
  13. [13]
    C. G. Esseen, Fourier analysis of distribution functions,Acta Math.,77 (1945), pp. 1–125.Google Scholar
  14. [14]
    A. Rényi,Wahrscheinlichkeitsrechnung, mit einem Anhang über Informationstheorie (VEB Deutscher Verlag der Wissenschaften, Berlin, 1962).Google Scholar

Copyright information

© Akadémiai Kiadó 1969

Authors and Affiliations

  • I. Kátai
    • 1
  1. 1.Algebra és Számelméleti TanszékEötvös Loránd TudományegyetemBudapest, VIII.

Personalised recommendations