On the distribution of arithmetical functions

  • I. Kátai
Article

Keywords

Arithmetical Function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. ErdősA. Wintner, Additive arithmetical functions and statistical independence,Amer. J. Math.,61 (1939), pp. 713–721.Google Scholar
  2. [2]
    H. Delange, Un theoréme sur les fonctions arithmetiques multiplicatives es ses applications,Ann. Sci. Ecole Norm. Sup.,78 (1961), pp. 1–29.Google Scholar
  3. [3]
    I. Kátai, On distribution of arithmetical functions on the set of prime plus one,Compositio Math. (under press).Google Scholar
  4. [4]
    A. SchinzelP. Erdős, Distributions of the values of some arithmetical functions,Acta Arithm.,6 (1961), pp. 473–485.Google Scholar
  5. [5]
    A. Rényi, On the density of certain sequences of integers,Publ. Inst. Math. Belgrad,8 (1955), pp. 157–162.Google Scholar
  6. [6]
    й. Кубилиус,Вероятносмные метогы в теории чисел, Гос. изд. Политической и Научной Литературы Литовской ССР (Вильнюс, 1962).Google Scholar
  7. [7]
    M. Tanaka, On the number of prime factors of integers I,Japan J. Math.,25 (1955), pp. 1–20.Google Scholar
  8. [8]
    K. Prachar,Primzahlverteilung (Springer Verlag, 1957).Google Scholar
  9. [9]
    C. Hooley, On the power free values of polynomials,Mathematika,14 (1967), pp. 21–26.Google Scholar
  10. [10]
    P. Turán, Über einige Verallgemeinerungen eines Satzes von Hardy and Ramanujan,J. London Math. Soc.,11 (1936), pp. 125–133.Google Scholar
  11. [11]
    Б. В. Левин—А. С. Фаинлеиб, Применение некоторых интегральных уравнений к вопросам теории чисел,Успехи Мат. Наук СССР,22 (135) (1967), pp. 119–197.Google Scholar
  12. [12]
    E. Bombieri, On the large sieve,Mathematika,12 (1965), pp. 201–225.Google Scholar
  13. [13]
    C. G. Esseen, Fourier analysis of distribution functions,Acta Math.,77 (1945), pp. 1–125.Google Scholar
  14. [14]
    A. Rényi,Wahrscheinlichkeitsrechnung, mit einem Anhang über Informationstheorie (VEB Deutscher Verlag der Wissenschaften, Berlin, 1962).Google Scholar

Copyright information

© Akadémiai Kiadó 1969

Authors and Affiliations

  • I. Kátai
    • 1
  1. 1.Algebra és Számelméleti TanszékEötvös Loránd TudományegyetemBudapest, VIII.

Personalised recommendations