Advertisement

Structural optimization

, Volume 4, Issue 1, pp 17–22 | Cite as

Shape optimization of structures for multiple loading conditions using a homogenization method

  • A. R. Díaz
  • M. P. Bendsøe
Originals

Abstract

A formulation for shape optimization of elastic structures subject to multiple load cases is presented. The problem is solved using a homogenization method. When compared to the single load solution strategy, it is shown that the more general formulation can produce more stable designs while it introduces little additional complexity.

Keywords

Civil Engineer Load Condition Load Case Shape Optimization Solution Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bendsøe, M.P. 1989: Optimal shape design as a material distribution problem.Struct. Optim. 1, 193–202CrossRefGoogle Scholar
  2. Bendsøe, M.P.; Kikuchi, N. 1988: Generating optimal topologies in structural design using a homogenization method.Comp. Meth. Appl. Mech. Engrg. 71, 197–224CrossRefGoogle Scholar
  3. Díaz, A.; Belding, B. 1990: On optimum truss layout by a homogenization method.ASME Trans. Mech. Design (to appear)Google Scholar
  4. Haftka, R.T.; Adelman, H.M. 1989: Recent developments in structural sensitivity analysis.Struct. Optim. 1, 137–151CrossRefGoogle Scholar
  5. Kirsch, U. 1989: Optimal topologies of structures.Appl. Mech. Rev. 42, 223–239Google Scholar
  6. Olhoff, N.; Bendsøe, M.P.; Rasmussen, J. 1991: On CAD-intgrated structural topology and design optimization.Int. J. Num. Meth. Engng. (to appear)Google Scholar
  7. Papalambros, P.; Chirehdast, M. 1990: An integrated environment for structural configuration design.J. Engrg. Design 1, 73–91Google Scholar
  8. Pedersen, P. 1989: On optimal orientation of orthotropic materials.Struct. Optim. 1, 101–106CrossRefGoogle Scholar
  9. Rozvany, G.I.N. 1989:Structural design via optimality criteria. Dordrecht: KluwerGoogle Scholar
  10. Rozvany, G.I.N.; Zhou, M.; Rotthaus, M.; Gollub, W.; Spengemann, F. 1989: Continuum-type optimality criteria methods for large finite element systems with a displacement constraint: Part I.Struct. Optim. 1, 47–72CrossRefGoogle Scholar
  11. Rozvany, G.I.N.; Zhou, M.; Rotthaus, M.; Gollub, W.; Spengemann, F. 1990: Continuum-type optimality criteria methods for large finite element systems with a displacement constraint: Part II.Struct. Optim. 2, 77–104CrossRefGoogle Scholar
  12. Suzuki, K.; Kikuchi, N. 1991: A homogenization method for shape and topology optimization.Comp. Meth. Appl. Mech. Engrg. (to appear)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • A. R. Díaz
    • 1
  • M. P. Bendsøe
    • 2
  1. 1.Department of Mechanical EngineeringMichigan State UniversityEast LansingUSA
  2. 2.Mathematical InstituteTechnical University of DenmarkLyngbyDenmark

Personalised recommendations