Acta Informatica

, Volume 28, Issue 4, pp 351–363 | Cite as

Effective construction of the syntactic algebra of a recognizable series on trees

  • Symeon Bozapalidis
Article

Summary

In this paper we exhibit two different effective constructions of the syntactic algebra
associated to a recognizable formal series on treesS.
The one method consists of a direct construction of
(=a copy of
) which is the subspace
with the natural algebra structure.
We first determine a basis
$$S\tau _1^{ - 1} ,...,S\tau _m^{ - 1} $$
of the subspace
$$F_S = \left\langle {{{S\tau ^{ - 1} } \mathord{\left/ {\vphantom {{S\tau ^{ - 1} } {\tau \in P_\Sigma }}} \right. \kern-\nulldelimiterspace} {\tau \in P_\Sigma }}} \right\rangle \subseteq F^{T_\Sigma } $$
and then, using the junction isomorphism
we obtain a basis for
.
The second method consists of considering an arbitrary surjective realization (
, φ) ofS, defining an appropriate ideal ℬ of
and then constructing the quotient algebra
; this quotient is isomorphic to
and thus independent of the choice of (
φ).

Keywords

Information System Operating System Data Structure Communication Network Information Theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ber Reu 82]
    Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theor. Comput. Sci.18, 215–248 (1982)Google Scholar
  2. [Ber Reu 84]
    Berstel, J., Reutenauer, C.: Séries rationelles. Paris: Masson 1984Google Scholar
  3. [Boz Al 89]
    Bozapalidis, S., Alexandrakis, A.: Representations matricielles des séries d'arbre reconnaissables. Inf. Théor. Applicat.23, 449–459 (1989)Google Scholar
  4. [Boz Lou 83]
    Bozapalidis, S., Louscou-Bozapalidou, O.: The rank of a formal tree power series. Theoret. Comput. Sci.27, 211–215 (1983)Google Scholar
  5. [Eil 74]
    Eilenberg, S.: Automata, languages and machines. New York: Academic Press 1974Google Scholar
  6. [Kui Sal 86]
    Kuich, W., Salomaa, A.: Semirings, automata, languages. Berlin Heidelberg New York: Springer 1986Google Scholar
  7. [Sal Soi 78]
    Salomaa, A., Soittola, M.: Automata theoretic aspects of formal power series. Berlin Heidelberg New York: Springer 1978Google Scholar
  8. [Reu 80]
    Reutenauer, C.: Séries formelles et algèbres syntactiques. J. Algebra66, 448–483 (1980)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Symeon Bozapalidis
    • 1
  1. 1.Department of MathematicsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations