Metrika

, Volume 19, Issue 1, pp 18–22 | Cite as

A dual non-linear program

  • S. S. Chadha
  • R. N. Kaul
Article

Keywords

Stochastic Process Probability Theory Economic Theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eisenberg, E.: Duality in homogeneous Programming. Proc. Amer. Math. Soc., Vol. 12, pp. 783–87, 1961.Google Scholar
  2. —: Supports of a convex function. Bull. Amer. Math. Soc., Vol. 68, pp. 192–95, 1962.Google Scholar
  3. Gale, D.: Basic Theorems of real linear equations, inequalities, linear programming and game theory. Nav. Res. Log. Quart., Vol. 3, pp. 193–200, 1965.Google Scholar
  4. Kuhn, H. W., andA. W. Tucker: ‘Non-Linear Programming’ in Proceedings of the second Berkeley symposium on Mathematical Statistics and Probability. University of California Press, pp. 481–92, 1951.Google Scholar
  5. Sinha, S. M.: An extension of a theorem on supports of a convex function. Management Science, Vol. 12, No. 5, 1966.Google Scholar
  6. Sinha, S. M.: A duality theorem for non-linear Programming. Management Science, Vol. 12, No. 5, 1966.Google Scholar
  7. Tucker, A. W.: ‘Dual systems of homogeneous linear relations’ in “Linear inequalities and related systems”. Annals of Mathematics studies, No. 38, Princeton University Press, Princeton, N. J., pp. 3–18, 1956.Google Scholar
  8. —: Linear and Non-Linear Programming. Operations Research., Vol. 5, pp. 244–57, 1957.Google Scholar

Copyright information

© Physica-Verlag Rudolf Liebing KG 1972

Authors and Affiliations

  • S. S. Chadha
    • 1
  • R. N. Kaul
    • 1
  1. 1.Dept. of MathematicsUniversity of DelhiDelhi

Personalised recommendations