Skip to main content
Log in

Negative oxidation reduction potential as the limiting factor for exogastrulation in sea urchins

  • Abhandlungen
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The underlying factor in all these experiments is the matter of energy levels as indicated by oxidation-reduction potentials, and the importance of a correct potential in controlling the activation of the enzyme systems upon which growth and development of living cells depends.

In order to produce a definite structure in an organism, work is required. This is designated as energy produced by certain chemical reactions catalyzed by definite enzymes in a chain of enzyme reactions.

The E. M. F. as a measure of work of the reaction and translated into volts is indicated by the oxidation-reduction potential produced. There is a direct ratio between high redox potential and the production of energy which results in the growth of those parts of the organism requiring these factors. At a more negative potential these cells cannot function and merely produce results consistent with the reduced energy available.

In explaining variations in shape and form by different redox potentials, it is interesting to refer to Daniels, Mathews, and Wiliams (1929) who state that “the more positive the value of the redox potential, the more effective is the ion in the higher state of oxidation as an oxidizing agent; and conversely, the more negative the oxidation potential, the more powerful is the ion in the lower state of oxidation as a reducing agent.” This explanation holds for the production of exogastrula in sea urchin and other echinoid eggs, subjected to the reagents described in these pages.

It has been shown that the production of a negative redox potential in various ways as affecting the different enzyme systems is the limiting factor in the formation of exogastrula.

The special case of lithium chloride upon which most of these experiments herein described is predicated, shows definitely how much greater the negative redox potential becomes when lithium is added to sea water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axelrod, A. E., V. R. Potter, and C. A. Elvehjem, 1942: The succinoxidase system in riboflavin deficient rats. J. Biol. Chem. (Am.)142, 85–87.

    Google Scholar 

  • Ahlgren, G., 1923: Acta Med. Skand.57, 508.

    Google Scholar 

  • Barnard, R. D., 1933: The effect of cyanide and of variation in alkalinity on the oxidation reduction potential of the Hb-methemoglobin system. J. Gen. Physiol.16, 657–675.

    Google Scholar 

  • Barron, E. S. G., 1929: The effect of methylene blue on the oxygen consumption of sea urchin eggs. J. Biol. Chem. (Am.)81, 445–448.

    Google Scholar 

  • — and L. A. Hoffman, 1930: The catalytic effect of dyes on the oxygen consumption of living cells. J. Gen. Physiol.13, 483–494.

    Google Scholar 

  • Bergman, M., 1942: A classification of proteolytic enzymes. Adv. Enzymol. 2, 49–68.

    Google Scholar 

  • Beutner, R., 1957: Pacemaker activity through Osterhout'sNitella experiments. J. Comp. Cell Physiol.50, 349.

    Google Scholar 

  • Brooks, M. M., 1932: Methylene blue as an antidote to cyanide poisoning. Proc. Soc. Exp. Biol. Med.29, 1228–1230.

    Google Scholar 

  • —, 1933: Methylene blue as an antidote to CO poisoning. Amer. J. Physiol.104, 159–141.

    Google Scholar 

  • —, 1941: Further interpretations of the effects of CO and CN on oxidations in living cells. Biol. Bull.81, 284.

    Google Scholar 

  • — 1946: The mechanism of fertilization of eggs. Growth10, 391–410.

    Google Scholar 

  • — 1956: Changes in the growth of marine eggs as affected by changes in the redox potential. Protoplasma46, 104–107.

    Google Scholar 

  • Brooks, S. C., and M. M. Brooks, 1941: The Permeability of living cells. Protoplasma-onographie, vol. 19. Berlin-Zehlendorf: Gebrüder Borntraeger.

    Google Scholar 

  • Chance, R., and G. R. Williams, 1956: The respiratory chain and oxidative phosphorylation. Adv. Enzymo.17, 65–134.

    Google Scholar 

  • Clark, W. M., 1928: Studies on oxidation reduction. U. S. Public Health Service, Hygienic Laboratory, Bull. No.151, Washington, D. C.

    Google Scholar 

  • Child, C. M., 1935. Differential reduction of vital dyes in the early development of echinoderms. Arch. Entw.mechan.135, 426–456.

    Google Scholar 

  • —, 1936: A contribution to the physiology of exogastrulation in Echinoderms. Arch. Entw.mechan.135, 457–493.

    Google Scholar 

  • — 1953: Indicator patterns in relation to echinoderm exogastrulation. Biol. Bull.105, 62–79; Physiol. Zool.26, 28–58; Biol. Bull.104, 12–27.

    Google Scholar 

  • Dan, K., and K. Okazaki, 1956: Role of the secondary mesenchym cells in the formation of the primitive gut in sea urchin eggs. Biol. Bull.110, 29–42.

    Google Scholar 

  • Daniels, Mathews, and Williams, 1929: Experimental Physical Chemistry, McGraw-Hill, Book Co., New York.

    Google Scholar 

  • Eucken, A. E., E. R. Jelle, and V. K. La Mer, 1925: Fundamentals of Physical Chemistry, McGraw-Hill, Book Co., New York.

    Google Scholar 

  • Fromageot, C., 1947: Oxidation of organic sulfur in animals. Adv. Enzymol.7, 369–407.

    Google Scholar 

  • Gustafson, T., and I. Hasselberg, 1951: Enzymes in the development of sea urchin eggs. Exper. Cell Res.2, 642–672.

    Google Scholar 

  • Hamburger, V., 1957: The life history of a nerve cell. Amer. Scientist45, 265–277.

    Google Scholar 

  • Harvey, W. R., and C. M. Williams, 1958: Cyanide-sensitivity of the heart beat of theCecropia silkworm. Biol. Bull.114, 36–53.

    Google Scholar 

  • Herbst C., 1892: Experimentelle Untersuchungen über den Emflu\ der verÄnderten chemischen Zusammensetzung des umgebenden Mediums auf die Entwicklung der Tiere. I. Versuche an Seeigeleiern. Z. wiss. Zool.55, 446–518.

    Google Scholar 

  • —, 1893: Weiteres über die morphologische Wirkung der Lithiumsalze und ilire theoretische Bedeutung. Mitt. Zool. Stat. NeapelII, 136–220.

    Google Scholar 

  • —, 1896: Die formative Wirkung des Lithiums auf befruchtete Eier vonAsterias glacialis. Arch. Entw.mechan.2, 455–516.

    Google Scholar 

  • —, 1897: über die zur Entwiddling der Seeigellarven notwendigen anorganischen Stoffe, ihre Rolle und ihre Vertretbarkeit. I. Die zur Entwicklung notwendigen anorganischen Stoffe. Arch. Entw.mechan.5, 649–793.

    Google Scholar 

  • — 1904: Die Rolle der notwendigen anorganischen Stoffe. Arch. Ent.mechan.17, 306, 520.

    Google Scholar 

  • Hildebrand, J., and R. E. Powell, 1957: Principles of Chemistry. MacMillan Co., New York.

    Google Scholar 

  • Horstadius, S., 1935: Die Determination bei Seeigeln. Publ. Staz. Zool. Neapel,14, 251–429.

    Google Scholar 

  • Johnson, Frank H, 1947: Bacterial luminescence. Adv. Enzymol.7, 205–264.

    Google Scholar 

  • Leuthart, F., and A. F. Muller, 1948: Janus green in rat livers. Experientia4, 478–480.

    Google Scholar 

  • Lindahl, P. E., 1933: über animalisierte und vegetativisierte Seeigelkeime. Arch. Entw.mechan.128, 300–338.

    Google Scholar 

  • —, 1936: Zur Kenntnis der physiologischen Grundlagen der Determination im Seeigelkeim. Acta Zool.17, 179–365.

    Google Scholar 

  • —, 1939: Zur Kenntnis der Entwicklungsphysiologie des Seeigels. Z. vergl. Physiol.27, 235–250.

    Google Scholar 

  • —, 1940: Neue BeitrÄge zur physiologischen Grundlage der Vegetativisierung des Seeigelkeimes durch Lithiumionen. Arch. Entw.mechan.140, 168–194.

    Google Scholar 

  • —, 1942: Eine Bemerkung zu der Arbeit „Lithium und Echinoderm exogastrula“. Protoplasma36, 558–570.

    Google Scholar 

  • —, 1951: On the accumulation of inorganic pyrophosphate in the cleaving sea urchin egg caused by lithium ion. Ark. Kemi3, 97.

    Google Scholar 

  • —, and H. Holter, 1940: Die Atmung animaler und vegetativer KeimhÄlften vonParacentrotus lividus. C. r. trav. lab. Carlsberg, Sir. Chim.23, 257–287.

    Google Scholar 

  • —, and L. O. Ohman, 1938: Weitere Studien über Stoffwechsel und Determination im Seeigelkeim. Biochem. Zbl.58, 179–218.

    Google Scholar 

  • —, and A. Stordal, 1937: Zur Kenntnis des vegetativen Stoffwechsels im Seeigelkeim. Arch. Entw.mechan.136, 44–63.

    Google Scholar 

  • —, B. Swedmark, and J. Lundin, 1951: Some new observations on animalization of sea urchin eggs. Exper. Cell Res.2, 39–46.

    Google Scholar 

  • Mahler, H. R., 1956: The nature and function of metalloflavoproteins. Adv. Enzymol.17, 233–291.

    Google Scholar 

  • Moore, A. R., 1941: On the mechanism of gastrulation inDendraster excentricus. J. Exper. Zool.87, 101–111.

    Google Scholar 

  • McCutcheon, M., and B. Lucke, 1928: The effect of certain electrolytes and non electrolytes on the permeability of living cells to water. J. Gen. Physiol.12, 129–138.

    Google Scholar 

  • Neurath, H., and G. H. Dixon, 1957: Symposium on the structure and function of proteins. Federation Proc.16, 791–801.

    Google Scholar 

  • Norris, W. E., Jr., and H. Rosene, 1955: Simultaneous measurements of redox potential and of the velocity of reduction of redox indicators in the onion root. Biodynamica7, 257–272.

    Google Scholar 

  • Pease, D. C., 1942: Echinoderm bilateral determination in chemical concentration gradients. II. J. Exp. Zool.89, 329–345.

    Google Scholar 

  • Ranzi, S., und M. Falkenheim, 1937: Recerchi sulle basi fisiologiche della determinatione nell'embrione degli Echinodermi. Pubbl. Staz. Napoli16.

  • Runnström, J., 1928: Zur Experimental-Analyse der Wirkung des Lithiums auf den Seeigelkeim. Acta Zool. Stockh.9, 365–424.

    Google Scholar 

  • —, 1929: über die VerÄnderung der Plasma-Kolloide bei der Entwicklungserregung des Seeigels. Protoplasma5, 201–310.

    Google Scholar 

  • —, 1933: Kurze Mitteilungen zur Physiologie der Determination des Seeigelkeimes. Arch. Entw.mechan.129, 442–444.

    Google Scholar 

  • —, 1935: An analysis of the action of lithium on sea urchin development. Biol. Bull.68, 378–384.

    Google Scholar 

  • —, 1933: On the influence of pyocyanine on the respiration of sea urchin eggs. Biol. Bull.68, 327–334.

    Google Scholar 

  • Schou, M., 1957: Biology and pharmacology of the lithium ion. Pharm. Reviews9, 17–58.

    Google Scholar 

  • Stotz, E., and A. N. Hastings, 1937: The components of the succinate-fumarate enzyme system. J. Biol. Chem.118, 479–498.

    Google Scholar 

  • Sumner, J. B., and G. F. Somers, 1943: Chemistry and methods of enzymes. Academic Press, Third Edition, New York.

    Google Scholar 

  • Tauber, H., 1949: Chemistry and technology of enzymes. Wiley & Sons, New York.

    Google Scholar 

  • Von Ubisch, L., 1925: Entwicklungsphysiologische Studien am Seeigelkeim. Z. Wiss. Zool.124, 469–486.

    Google Scholar 

  • —, 1929: Uber die Determination der Larval-Organe und der Imaginalanlage bei Seeigeln. Arch. Entw.mechan.117, 80–122.

    Google Scholar 

  • Waterman, A. J., 1937: The effects of isotonic salt solutions upon the development of the blastula of the sea urchin. Biol. Bull.73, 401–420.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brooks, M.M. Negative oxidation reduction potential as the limiting factor for exogastrulation in sea urchins. Protoplasma 51, 131–153 (1959). https://doi.org/10.1007/BF01893250

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01893250

Keywords

Navigation