Skip to main content
Log in

Inositoltrisphosphat, ein neuer „Second Messenger“ für positiv inotrope Wirkungen am Herzen?

Inositol trisphosphate, a novel second messenger for positive inotropic effects in the heart?

  • Übersicht
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

Myocardial alpha1-adrenoceptors mediate a positive inotropic effect and influence the inositol phosphate cycle. The receptor-stimulated, phospholipase C-mediated hydrolysis of phosphatidylinositol bisphosphate (PIP2) results in the generation of two novel second messengers, inositol trisphosphate (IP3) and diacylglycerol (DG). This effect is concentration-dependent and precedes the increase in force of contraction. Recently, it has been shown that the alpha1-adrenoceptor-mediated increase in IP3 and force of contraction exists in the human heart as well.

Possible mechanisms for an inositol phosphate-mediated positive inotropic effect are: (i) release of Ca2+ from the sarcoplasmic reticulum, elicited by IP3. (ii) increase in Ca2+ sensitivity of the contractile proteins, elicited by IP3, inositol tetrakisphosphate (IP4) and/or DG. (iii) increase in slow Ca2+ inward current, elicited directly by IP4 and/or indirectly by DG through a phosphorylation of the protein kinase C substrate in the sarcolemma.

In ventricular cardiac preparations muscarinic agonists have a weak positive inotropic effect, but in cardiac atrial preparations they have a negative inotropic effect. In both preparations, these different effects coincide with a concentration-dependent increase in IP3. Thus, the possible positive inotropic effect in atrial preparations is probably masked by an activation of a K+ outward current.

The relationship between the inositol phosphate cycle and the positive inotropic effect is in some points still speculative because not all of the mechanisms discussed are well settled yet. However, the stimulation of myocardial phosphoinositide breakdown resulting in an increased IP3 may be involved in the mechanism(s) whereby alpha1-adrenergic and muscarinic receptor stimulation exert an increase in myocardial force of contraction. Thus, the increase in inositol phosphates seems to be an important transmembrane signalling mechanism for alpha1-adrenergic and muscarinic receptors in the heart.

Zusammenfassung

KardialeAlpha 1-Adrenozeptoragonisten beeinflussen den Inositol-Lipid-Stoffwechsel und vermitteln einen positiv inotropen Effekt. Nach einer Agonist-vermittelten Hydrolyse von PIP2 entstehen die „second messenger“ IP3 und DG. Die Bildung von IP3 ist konzentrationsabhängig und geht dem positiv inotropen Effekt zeitlich voran. Der Inositol-Lipid-Stoffwechsel konnte kürzlich auch am menschlichen Herzen nachgewiesen werden, so daß er auch hier für den positiv inotropen Effekt eine Rolle spielen könnte. An der Vermittlung der alpha-adrenergen positiv inotropen Wirkung könnten folgende Inositol-Lipid-Stoffwechselprodukte beteiligt sein:

  1. 1.

    Eine intrazelluläre Ca2+-Freisetzung aus dem sarkoplasmatischen Retikulum, vermittelt durch IP3;

  2. 2.

    eine Steigerung der Empfindlichkeit der kontraktilen Proteine für Ca2+, vermittelt durch IP3, IP4 und/oder DG;

  3. 3.

    eine Steigerung des langsamen Ca2+-Einwärtsstromes, direkt vermittelt durch IP4 und/oder indirekt durch DG über eine Phosphorylierung der Plasmamembran und Öffnung von Ionenkanälen.

Kardialem-Cholinozeptoragonisten haben am Ventrikel einen geringen positiv inotropen Effekt, während sie am Vorhof im Gegensatz dazu negativ inotrop wirken. Am Vorhof und Ventrikel kommt es aber, ähnlich wie beim Alpha1-Adrenozeptor, zu einem IP3 Anstieg. Am Vorhof wird ein möglicherweise IP3-vermittelter positiv inotroper Effekt durch eine direkte Wirkung auf den K+-Auswärtststrom maskiert.

Der Zusammenhang zwischen dem positiv inotropen Effekt und dem Inositol-Lipid-Stoffwechsel ist in einigen Punkten noch nicht vollständig aufgeklärt. IP3 scheint jedoch ein weiterer „second messenger“ zu sein, der Rezeptoren und intrazelluläre Ca2+-Speicher verbindet. Ob Veränderungen des Inositol-Lipid-Stoffwechsels bei pathologischen Situationen wie z.B. Herzinsuffizienz, Hypertonie und Ischämie eine Rolle spielen, sollte näher untersucht werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IP1, IP2, IP3, IP4, IP5 und IP6 :

Inositolmono-, bis-, tris-, tetrakis-, pentakis- und hexakisphosphat

PI, PIP und PIP2 :

Phosphatidylinositol, -phosphat und -bisphosphat

DG:

Diacylglycerol

cAMP:

cyclisches Adenosin-3′,5′-monophosphat

G-Protein:

Guanin-Nukleotid-bindendes Protein

Literatur

  1. Aass H, Skomedal T, Osnes JB, Fjeld NB, Klingen G, Langslet A, Svennevig J, Semb G (1986) Noradrenaline evokes an alpha-adrenoceptor-mediated inotropic effect in human ventricular myocardium. Acta Pharmacol Toxicol 58:88–90

    Google Scholar 

  2. Adbel-Latif AA (1986) Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers. Pharmacol Rev 38:227–272

    PubMed  Google Scholar 

  3. Altman J (1988) Inositol phosphates. Ins and outs of cell signalling. Nature (Lond) 331:119–120

    PubMed  Google Scholar 

  4. Anderson RJ, Roberts EG (1930) The chemistry of the lipids of tubercle bacilli, XX: the occurrence of mannose and inosite in the phosphatide fractions from the human, bovine and avian tubercle bacilli. J Biol Chem 89:611–617

    Google Scholar 

  5. Batty IR, Nahorski SR, Irvine RF (1985) Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochem J 232:211–215

    PubMed  Google Scholar 

  6. Benfey BG (1987) Function of myocardial alpha-adrenoceptors. J Appl Cardiol 2:49–70

    Google Scholar 

  7. Berridge MJ, Downes CP, Hanley MR (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J 206:587–595

    PubMed  Google Scholar 

  8. Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature (Lond) 312:315–321

    Article  Google Scholar 

  9. Blinks JR, Endoh M (1986) Modification of myofibrillar responsiveness to Ca2+ as an inotropic mechanism. Circulation 73 (Suppl III):III85-III98

    PubMed  Google Scholar 

  10. Böhm M, Schmitz W, Scholz H (1987) Evidence against a role of a pertussis toxin-sensitive guanine nucleotide-binding protein in the alpha1-adrenoceptor-mediated positive inotropic effect in the heart. Naunyn Schmiedebergs Arch Pharmacol 335:476–479

    PubMed  Google Scholar 

  11. Brown JH, Brown SL (1984) Agonists differentiate muscarinic receptors that inhibit cyclic AMP formation from those that stimulate phosphoinositide metabolism. J Biol Chem 259:3777–3781

    PubMed  Google Scholar 

  12. Brown JH, Buxton IL, Brunton LL (1985) Alpha1-adrenergic and muscarinic cholinergic stimulation of phosphoinositide hydrolysis in adult rat cardiomyocytes. Circ Res 57:532–537

    PubMed  Google Scholar 

  13. Brown JH, Jones LG (1986) Phosphoinositide metabolism in the heart. In: Putney JW (ed) Phosphoinositides and receptor mechanisms. Alan R Liss, New York, pp 245–270

    Google Scholar 

  14. Brown SL, Brown JH (1983) Muscarinic stimulation of phosphatidylinositol metabolism in atria. Mol Pharmacol 24:351–356

    PubMed  Google Scholar 

  15. Brückner R, Hackbarth I, Meinertz T, Schmelzle B, Scholz H (1978) The positive inotropic effect of phenylephrine in the presence of propranolol. Increase in time to peak force and in relaxation time without increase in cAMP. Naunyn Schmiedebergs Arch Pharmacol 303:205–211

    PubMed  Google Scholar 

  16. Brückner R, Meyer W, Mügge A, Schmitz W, Scholz H (1984) Alpha-adrenoceptor-mediated positive inotropic effect of phenylephrine in isolated human ventricular myocardium. Eur J Pharmacol 99:345–347

    PubMed  Google Scholar 

  17. Brückner R, Scholz H (1984) Effects of alpha-adrenoceptor stimulation with phenylephrine in the presence of propranolol on force of contraction, slow inward current and cyclic AMP content in the bovine heart. Br J Pharmacol 82:223–232

    PubMed  Google Scholar 

  18. Burgess GM, McKinney JS, Irvine RF, Putney JW (1985) Inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate formation in Ca2+-mobilizing-hormone activated cells. Biochem J 232:237–243

    PubMed  Google Scholar 

  19. Buxton ILO, Brunton LL (1985) Action of the cardiac alpha1-adrenergic receptor. J Biol Chem 11:6733–6737

    Google Scholar 

  20. Cockroft S (1987) Polyphosphoinositide phosphodiesterase: regulation by a novel guanine nucleotide binding protein, Gp. Trends Pharmacol Sci 12:75–78

    Google Scholar 

  21. Cockroft S, Gomperts BD (1985) Role of a guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature (Lond) 314:534–536

    PubMed  Google Scholar 

  22. Dösemeci A, Dhallan RS, Cohen NM, Lederer WJ, Rogers TB (1988) Phorbol ester increases calcium current and stimulates the effects of angiotensin II on cultured neonatal rat hearts myocytes. Circ Res 62:347–357

    PubMed  Google Scholar 

  23. Dreher ML, Hanley MR (1988) Multiple modes of protein kinase C regulation and their significance in signalling. Trends Pharmacol Sci 9:114–115

    PubMed  Google Scholar 

  24. Endoh M (1987) Dual inhibition of myocardial function through muscarinic and adenosine receptors in the mammalian heart. J Appl Cardiol 2:213–230

    Google Scholar 

  25. Endoh M, Blinks JR (1988) Actions of sympathomimetic amines on the Ca2+ transients and contractions of rabbit myocardium: reciprocal changes in myofibrillar responsiveness to Ca2+ mediated through alpha- and beta-adrenoceptors. Circ Res 62:247–265

    PubMed  Google Scholar 

  26. Enna SJ, Karbon EW (1987) Receptor regulation: evidence for a relationship between phospholipid metabolism and neurotransmitter receptor-mediated cAMP formation in brain. Trends Pharmacol Sci 8:21–24

    Google Scholar 

  27. Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245 (Cell Physiol 14):C1-C14

    PubMed  Google Scholar 

  28. Fabiato A (1986) Inositol (1, 4, 5)-trisphosphate-induced release of Ca2+ from the sarcoplasmic reticulum of skinned cardiac cells. Biophys J 49:190a

    Google Scholar 

  29. Gaut ZN, Huggins CG (1966) Effect of epinephrine on the metabolism of the inositol phosphatides in rat heart in vivo. Nature (Lond) 212:612–613

    PubMed  Google Scholar 

  30. Gili DL, Veda T, Chueh SH, Noel MW (1986) Ca2+ release from endoplasmic reticulum is mediated by a guanine nucleotide regulatory mechanism. Nature (Lond) 320:461–464

    PubMed  Google Scholar 

  31. Hartzell HC, Glass DB (1984) Phosphorylation of purified cardiac muscle C protein by purified cAMP-dependent and endogenous Ca++-calmodulin-dependent protein kinases. J Biol Chem 259:15587–15596

    PubMed  Google Scholar 

  32. Heslop JP, Irvine RF, Tashjian AH, Berridge MJ (1985) Inositol tetrakis- and pentakisphosphates in GH4 cells. J Exp Biol 119:395–401

    PubMed  Google Scholar 

  33. Hirata M, Suematsu E, Hashimoto T, Hamachi T, Koga T (1984) Release of Ca2+ from a non-mitochondrial store site in peritoneal macrophages treated with saponin by inositol 1,4,5-trisphosphate. Biochem J 223:229–236

    PubMed  Google Scholar 

  34. Hokin MR, Hokin LE (1953) Enzyme secretion and incorporation of32P into phospholipids of pancreas slices. J Biol Chem 203:967–977

    PubMed  Google Scholar 

  35. Irvine RF, Änggard AJ, Letcher AJ, Downes CP (1985) Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands. Biochem J 229:505–511

    PubMed  Google Scholar 

  36. Irvine RF, Brown KD, Berridge MJ (1984) Specificity of inositol trisphosphate-induced calcium release from permeabilized Swiss-mouse 3T3 cells. Biochem J 221:269–272

    PubMed  Google Scholar 

  37. Irvine RF, Letcher AJ, Heslop JP, Berridge MJ (1986) The inositol tris/tetrakisphosphate pathway — demonstration of Ins(1,4,5)P3 3-kinase activity in animal tissues. Nature (Lond) 320:631–634

    PubMed  Google Scholar 

  38. Irvine RF, Letcher AJ, Lander DJ, Downes CP (1984) Inositol trisphosphate in carbachol-stimulated rat parotid glands. Biochem J 223:237–243

    PubMed  Google Scholar 

  39. Irvine RF, Moor RM (1986) Microinjection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem J 240:917–920

    PubMed  Google Scholar 

  40. Jakobs KH, Aktories K, Schultz G (1984) Mechanism of the pertussis toxin action on the adenylate cyclase system. Inhibition of the turn-on reaction of the inhibitory regulatory site. Eur J Biochem 140:177–181

    PubMed  Google Scholar 

  41. Katoh N, Wise BC, Kuo JF (1983) Phosphorylation of cardiac troponin inhibitory subunit (troponin I) and tropomyosin-binding subunit (troponin T) by cardiac phospholipid-sensitive Ca2+-dependent protein kinase. Biochem J 209:189–195

    PubMed  Google Scholar 

  42. Kohl C, Schmitz W, Scholz H, Scholz J, Toth M (1988) Time course of the effects of carbachol and (−)-N6-phenylisopropyladenosine on inositolphosphate turnover and force of contraction in mammalian heart. Naunyn Schmiedebergs Arch Pharmacol, 38:R45

    Google Scholar 

  43. Kohl C, Schmitz W, Scholz H, Scholz J, Toth M, Döring V, Kalmar P (1989) Evidence for alpha1-adrenoceptor-mediated increase of inositol trisphosphate in the human heart. J Cardiovasc Pharmacol, in press

  44. Korth M, Sharma VK, Sheu SS (1988) Stimulation of muscarinic receptors raises free intracellular Ca2+ concentration in rat ventricular myocytes. Circ Res 62:1080–1087

    PubMed  Google Scholar 

  45. Lea TJ, Griffiths PJ, Tregear RT, Ashley CC (1986) An examination of the ability of inositol 1,4,5-trisphosphate to induce calcium release and tension development in skinned skeletal muscle fibres of frog and crustaces. FEBS Lett 207:153–161

    PubMed  Google Scholar 

  46. Leung E, Johnston CI, Woodcock EA (1986) Stimulation of phosphatidylinositol metabolism in atrial and ventricular myocytes. Life Sci 39:2215–2220

    PubMed  Google Scholar 

  47. Lichtstein D, Rodbard D (1987) A second look at the second messenger hypothesis. Life Sci 40:2041–2051

    PubMed  Google Scholar 

  48. Lim MS, Sutherland C, Walsh MP (1985) Phosphorylation of bovine cardiac protein by protein kinase C. Biochem Biophys Res Commun 132:1187–1195

    PubMed  Google Scholar 

  49. Limas CJ (1985) Characterization of phorbol diester binding to isolated cardiac myocytes. Arch Biochem Biophys 238:300–304

    PubMed  Google Scholar 

  50. Lindemann JP (1986) Alpha-adrenergic stimulation of sarcolemmal protein phosphorylation and slow responses in intact myocardium. J Biol Chem 261:4860–4867

    PubMed  Google Scholar 

  51. Linden J, Hollen CE, Patel A (1985) The mechanism by which adenosine and cholinergic agents reduce contractility in rat myocardium. Correlation with cyclic adenosine monophosphate and receptor densities. Circ Res 56:728–735

    PubMed  Google Scholar 

  52. Löffelholz K, Pappano AJ (1985) The parasympathetic neuroeffector junction of the heart. Pharmacol Rev 37:1–24

    PubMed  Google Scholar 

  53. Majerus PW, Connolly TM, Bansal VS, Inhorn RC, Ross TS, Lips DL (1988) Inositol phosphates: synthesis and degradation. J Biol Chem 263:3051–3054

    PubMed  Google Scholar 

  54. Mayr GW (1987) Inositol phosphates: structural components, regulators and signal transducers of the cell — a review. Monographie: 1–18

  55. Michell B (1986) A second messenger function for inositol tetrakisphosphate. Nature (Lond) 323:112

    PubMed  Google Scholar 

  56. Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415:81–147

    PubMed  Google Scholar 

  57. Michell RH (1987) How do receptors at the cell surface send signals to the cell interior? Br Med J 295:1320–1323

    Google Scholar 

  58. Morris AP, Gallacher DV, Irvine RF, Petersen OH (1987) Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+ channels. Nature (Lond) 330:653–655

    Article  Google Scholar 

  59. Movsesian MA, Nishikawa M, Adelstein RS (1984) Phosphorylation of phospholamban by calcium-activated, phospholipid-dependent protein kinase. J Biol Chem 259:8029–8032

    PubMed  Google Scholar 

  60. Movsesian MA, Thomas AP, Selak M, Williamson JR (1985) Inositol trisphosphate does not release Ca2+ from permeabilized cardiac myocytes and sarcoplasmic reticulum. FEBS Lett 185:328–332

    PubMed  Google Scholar 

  61. Mügge A (1985) Alpha-adrenozeptoren am Myokard: Vorkommen und funktionelle Bedeutung. Klin Wochenschr 63:1087–1097

    PubMed  Google Scholar 

  62. Nahorski SR (1985) Inositol phospholipid hydrolysis as a primary response to receptors not linked to adenylate cyclase. Arznei-Forsch/Drug Res 35:1886–1890

    Google Scholar 

  63. Nahorski SR, Batty I (1986) Inositol tetrakisphosphate: Recent developments in phosphoinositide metabolism and receptor function. Trends Pharmacol Sci 7:83–85

    Google Scholar 

  64. Nakamura T, Ui M (1985) Simultaneous inhibitions of inositol phospholipid breakdown, arachidonic acid release, and histamine secretion in mast cells by islet-activating protein, pertussis toxin. J Biol Chem 260:3584–3593

    PubMed  Google Scholar 

  65. Nawrath H, Rombusch M (1988) On the mechanism of the electrophysiological and positive inotropic effects of phenylephrine in the rabbit heart. Naunyn Schmiedebergs Arch Pharmacol 337 (Suppl):R61

  66. Nawrath H, Rupp J (1986) Adrenoceptor-mediated changes of action potential and force of contraction in human ventricular heart muscle. J Mol Cell Cardiol 18 (Suppl 1):325

    Google Scholar 

  67. Niedel JE, Blackshear PJ (1986) Protein kinase C. In: Putney JW (ed) Phosphoinositides and receptor mechanisms. Alan R Liss, New York, pp 47–88

    Google Scholar 

  68. Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature (Lond) 308:693–698

    Article  Google Scholar 

  69. Nishizuka Y (1986) Studies and perspectives of protein kinase C. Science (Wash DC) 233:305–312

    PubMed  Google Scholar 

  70. Nosek TM, Williams MF, Zeigler ST, Godt RE (1986) Inositol trisphosphate enhances calcium release in skinned cardiac and skeletal muscle. Am J Physiol 250:C807-C811

    PubMed  Google Scholar 

  71. Otani H, Otani H, Das DK (1986) Evidence that phosphoinositide response is mediated by alpha1-adrenoceptor stimulation, but not linked with excitation-contraction coupling in cardiac muscle. Biochem Biophys Res Commun 136:863–869

    PubMed  Google Scholar 

  72. Otani H, Otani H, Das DK (1988) Alpha1-adrenoceptor-mediated phosphoinositide breakdown and inotropic responses in rat left ventricular papillary muscles. Circ Res 62:8–17

    PubMed  Google Scholar 

  73. Otani H, Otani H, Das DK (1988) Positive inotropic effect and phosphoinositide breakdown mediated by arachidonic acid and prostaglandin F. J Pharmacol Exp Ther 244:844–851

    PubMed  Google Scholar 

  74. Pennington SR (1987) Cell signalling. G proteins and diabetes. Nature (Lond) 327:188–189

    PubMed  Google Scholar 

  75. Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B (1985) GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature (Lond) 317:536–538

    Article  Google Scholar 

  76. Poggioli J, Sulpice JC, Vassort G (1986) Inositol phosphate production following alpha1-adrenergic, muscarinic or electrical stimulation in isolated rat hearts. FEBS Lett 206:292–298

    PubMed  Google Scholar 

  77. Presti CF, Scott BT, Jones LR (1985) Identification of an endogenous protein kinase C activity and its intrinsic 15-kilodalton substrate in purified canine cardiac sarcolemmal vesicles. J Biol Chem 260:13879–13889

    PubMed  Google Scholar 

  78. Renard D, Poggioli J (1987) Does the inositol tris/tetrakisphosphate pathway exist in rat heart? FEBS Lett 217:117–123

    PubMed  Google Scholar 

  79. Rosenthal W, Schultz G (1988) Guaninnucleotid-bindende Proteine als membranäre Signaltransduktionskomponenten und Regulatoren enzymatischer Effektoren. Klin Wochenschr 66:511–523

    PubMed  Google Scholar 

  80. Ruskoaho H, Toth M, Lang RE (1985) Atrial natriuretic peptide secretion: synergistic effect of phorbol ester and A 23187. Biochem Biophys Res Commun 133:581–588

    PubMed  Google Scholar 

  81. Satoh H, Hiramoto T, Endoh M (1987) Does pertussis toxin (IAP) modify the muscarinic and alpha receptormediated positive inotropic effects in the rabbit myocardium? Asia Pacific J Pharmacol 2:107–114

    Google Scholar 

  82. Scherer N, Ferguson JE (1985) Inositol 1,4,5-trisphosphate is not effective in releasing calcium from skeletal sarcoplasmic reticulum microsomes. Biochem Biophys Res Commun 128:1064–1070

    PubMed  Google Scholar 

  83. Schmitz W, Scholz H, Scholz J, Steinfath M (1987) Increase in IP3 precedes alpha-adrenoceptor-induced increase in force of contraction in cardiac muscle. Eur J Pharmacol 140:109–111

    PubMed  Google Scholar 

  84. Schmitz W, Scholz H, Scholz J, Steinfath M, Lohse M, Puurunen J, Schwabe U (1987) Pertussis toxin does not inhibit the alpha1-adrenoceptor-mediated effect on inositol phosphate production in the heart. Eur J Pharmacol 134:377–378

    PubMed  Google Scholar 

  85. Scholz H, Brückner R, Mügge A, Reupcke C (1986) Myocardial alpha-adrenoceptors and positive inotropy. J Mol Cell Cardiol 18 (Suppl 5):79–87

    PubMed  Google Scholar 

  86. Scholz J, Kohl C, Toth M (1988) Effects of carbachol and (−)-N6-phenylisopropyladenosine on inositolphosphate turnover and on force of contraction in guinea-pig heart. Naunyn Schmiedebergs Arch Pharmacol 337 (Suppl):R62

  87. Scholz J, Schaefer B, Schmitz W, Scholz H, Steinfath M, Lohse M, Schwabe U, Puurunen J (1988) Alpha1-adrenoceptor-mediated positive inotropic effect and inositol trisphosphate increase in mammalian heart. J Pharmacol Exp Ther 245:327–335

    PubMed  Google Scholar 

  88. Schümann HJ, Endoh M, Brodde OE (1975) The time course of the effects of beta- and alpha-adrenoceptor stimulation by isoprenaline and methoxamine on the contractile force and cAMP level of the isolated rabbit papillary muscle. Naunyn Schmiedebergs Arch Pharmacol 289:291–302

    PubMed  Google Scholar 

  89. Sekar MC, Hokin LE (1986) The role of phosphoinositides in signal transduction. J Membr Biol 89:193–210

    PubMed  Google Scholar 

  90. Smith JB, Smith L, Higgins BL (1985) Temperature and nucleotide dependence of calcium release by myo-inositol 1,4,5-trisphosphate in cultured vascular smooth muscle cells. J Biol Chem 260:14413–14416

    PubMed  Google Scholar 

  91. Sonnenberg H, Veress AT (1984) Cellular mechanism of release of atrial natriuretic factor. Biochem Biophys Res Commun 124:443–449

    PubMed  Google Scholar 

  92. Spät A, Bradford PG, McKinney JS, Rubin RP, Putney JW (1986) A saturable receptor for32P-inositol-1,4,5-trisphosphate in hepatocytes and neutrophils. Nature (Lond) 319:514–516

    PubMed  Google Scholar 

  93. Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol 1,4,5-trisphosphate. Nature (Lond) 306:67–69

    PubMed  Google Scholar 

  94. Suemtsu E, Hirata M, Hashimoto T, Kuriyama H (1984) Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery. Biochem Biophys Res Commun 120:481–485

    PubMed  Google Scholar 

  95. Tajima T, Tsuji Y, Brown JH, Pappano AJ (1987) Pertussis toxin-insensitive phosphoinositide hydrolysis, membrane depolarization, and positive inotropic effect of carbachol in chick atria. Circ Res 61:436–445

    PubMed  Google Scholar 

  96. Taylor CW (1987) Receptor regulation of calcium entry. Trends Pharmacol Sci 8:79–80

    Google Scholar 

  97. Teutsch I, Weible A, Siess M (1987) Differential inotropic and chronotropic effects of various protein kinase C activators on isolated guinea pig atria. Eur J Pharmacol 144:363–367

    PubMed  Google Scholar 

  98. Thieleczek R, Heilmeyer jr LMG (1986) Inositol 1,4,5-trisphosphate enhances Ca2+-sensitivity of the contractile mechanism of chemically skinned rabbit skeletal muscle fibres. Biochem Biophys Res Commun 135:662–669

    PubMed  Google Scholar 

  99. Tung LH, Rand MJ, Louis WS (1985) Cardiac alpha-adrenoceptors involving positive chronotropic responses. J Cardiovasc Pharmacol 7 (Suppl 6):S121-S126

    Google Scholar 

  100. Vallejo M, Jackson T, Lightman S, Hanley MR (1987) Occurence and extracellular actions of inositol pentakis- and hexakisphosphate in mammalian brain. Nature (Lond) 330:656–658

    PubMed  Google Scholar 

  101. Vergara J, Tsien RY, Delay M (1985) Inositol 1,4,5-trisphosphate: A possible chemical link in excitation-contraction coupling in muscle. Proc Natl Acad Sci USA 82:6352–6356

    PubMed  Google Scholar 

  102. Volpe P, Salviati G, DiVirgilio F, Pozzan T (1985) Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle. Nature (Lond) 316:347–349

    PubMed  Google Scholar 

  103. Williamson JR (1986) Role of inositol lipid breakdown in the generation of intracellular signals. State of the art lecture. Hypertension 8 (Suppl II):II140-II156

    PubMed  Google Scholar 

  104. Wilson DB, Connolly TM, Bross TE, Majerus PW, Sherman WR, Tyler AN, Rubin LJ, Brown JE (1985) Isolation and characterization of the inositol cyclic phosphate products of polyphosphoinositide cleavage by phospholipase C. J Biol Chem 260:13496–13501

    PubMed  Google Scholar 

  105. Xuan YT, Su YF, Chang KJ, Watkins WD (1987) A pertussis/cholera toxin sensitive G-protein may mediate vasopressin-induced inositol phosphate formation in smooth muscle cell. Biochem Biophys Res Commun 146:898–906

    PubMed  Google Scholar 

  106. Yuan S, Sunahara FA, Sen AK (1987) Tumor-promoting phorbol esters inhibit cardiac functions and induce redistribution of protein kinase C in perfused beating rat heart. Circ Res 61:372–378

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, J. Inositoltrisphosphat, ein neuer „Second Messenger“ für positiv inotrope Wirkungen am Herzen?. Klin Wochenschr 67, 271–279 (1989). https://doi.org/10.1007/BF01892894

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01892894

Key words

Navigation