Zeitschrift für Physik A Atoms and Nuclei

, Volume 297, Issue 3, pp 247–256 | Cite as

Validity of the semiclassical kinetic energy density functional for deformed nuclear shapes

  • C. Guet
  • M. Brack


We investigate the semiclassical kinetic energy density functionalτ[ρ] for deformed nuclear shapes. Using Strutinsky-averaged quantities as reference, we demonstrate that the functionalτ[ρ] is able to reproduce the averaged kinetic energies very accurately, even at very large deformations.


Kinetic Energy Energy Density Elementary Particle Large Deformation Nuclear Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bohigas, O., Campi, X., Krivine, H., Treiner, J.: Phys. Lett. B64, 381 (1976)Google Scholar
  2. 1a.
    Chu, Y.H., Jennings, B.K., Brack, M.: Phys. Lett. B68, 407 (1977)Google Scholar
  3. 1b.
    Chu, Y.H.: Ph.D. Thesis, S.U.N.Y. Stony Brook (1977)Google Scholar
  4. 1c.
    Grammaticos, B.: Ann. Phys. (NY)126, 450 (1980)Google Scholar
  5. 2.
    Holzwarth, G., Eckart, G.: Nucl. Phys. A325, 1 (1979)Google Scholar
  6. 2a.
    Eckart, G., Holzwarth, G.: preprint Siegen Si-79-8Google Scholar
  7. 3.
    Krivine, H., Treiner, J., Bohigas, O.: Nucl. Phys. A336, 155 (1980)Google Scholar
  8. 4.
    Brack, M., Quentin, P.: Phys. Lett. B56, 421 (1975)Google Scholar
  9. 5.
    Vautherin, D., Brink, D.: Phys. Rev. C5, 626 (1972);Google Scholar
  10. 5a.
    see also Quentin, P., Flocard, H.: Ann. Rev. Nucl. Part. Sci.28, 523 (1978)Google Scholar
  11. 6.
    Hohenberg, P., Kohn, W.: Phys. Rev. B136, 864 (1964)Google Scholar
  12. 7.
    Kirzhnits, D.A.: Field Theoretical Methods in Many-Body Systems. Oxford: Pergamon Press 1967Google Scholar
  13. 7a.
    Hodges, C.H.: Can. J. Phys.51, 1428 (1973)Google Scholar
  14. 8.
    Jennings, B.K.: Ph.D. Thesis. McMaster (1976)Google Scholar
  15. 8a.
    Brack, M., Jennings, B.K., Chu, Y.H.: Phys. Lett B65, 1 (1976)Google Scholar
  16. 9.
    Lombard, R.: Ann. Phys. (N.Y.)77, 380 (1973)Google Scholar
  17. 10.
    Campi, X., Stringari, S.: Nucl. Phys. A337, 313 (1980)Google Scholar
  18. 11.
    Bhaduri, R.K., Ross, C.K.: Phys. Rev. Lett.27, 606 (1971)Google Scholar
  19. 11a.
    Jennings, B.K., Bhaduri, R.K., Brack, M.: Nucl. Phys. A253, 29 (1975)Google Scholar
  20. 12.
    v. Weizsäcker, C.F.: Z. Physik96, 431 (1935)Google Scholar
  21. 13.
    Grammaticos, B., Voros, A.: Ann. Phys. (N.Y.)123, 359 (1979) and preprint Saclay DPh-T/79/199 (1979)Google Scholar
  22. 14.
    Guet, C., Bengtsson, R., Brack, M.: Physics and Chemistry of Fission 1979. Proceedings of International Symposium at Jülich (I.A.E.A. Vienna, in print; paper I.A.E.A.-SM-241/H3)Google Scholar
  23. 14a.
    Guet, C., Håkansson, H.-B., Brack, M.: Preprint 1980. Phys. Lett. (submitted for publication)Google Scholar
  24. 15.
    Berg, R.A., Wilets, L.: Phys. Rev.101, 201 (1956)Google Scholar
  25. 16.
    Krivine, H., Treiner, J.: Phys. Lett. B88, 212 (1979)Google Scholar
  26. 17.
    Bohigas, O., Lane, A.M., Martorell, J.: Phys. Rep.51, 267 (1979)Google Scholar
  27. 18.
    Brack, M., Pauli, H.C.: Nucl. Phys. A207, 401 (1973)Google Scholar
  28. 19.
    Brack, M., Damgaard, J., Jensen, A.S., Pauli, H.C., Strutinsky, V.M., Wong, C.Y.: Rev. Mod. Phys.44, 320 (1972)CrossRefGoogle Scholar
  29. 20.
    Moszkowski, S.A.: Phys. Rev. C2, 402 (1970)Google Scholar
  30. 21.
    Brack, M., Quentin, P.: Nucl. Phys. (submitted for publication)Google Scholar
  31. 22.
    Mermin, N.D.: Phys. Rev. A137, 1441 (1965)Google Scholar
  32. 23.
    Jennings, B.K.: Preprint 1980. Phys. Lett. (submitted for publication)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • C. Guet
    • 1
  • M. Brack
    • 1
  1. 1.Institut für Theoretische Physik der UniversitätRegensburgFederal Republic of Germany

Personalised recommendations