Journal of Protein Chemistry

, Volume 13, Issue 1, pp 9–13 | Cite as

Abalone myoglobins evolved from indoleamine dioxygenase: The cDNA-derived amino acid sequence of myoglobin fromNordotis madaka

  • Tomohiko Suzuki


The cDNA for the unusual 41 kD myoglobin of the abaloneNordotis madaka was amplified by polymerase chain reaction (PCR), and the cDNA-derived amino acid sequence of 378 residues was determined. As with the myoglobin of the related abaloneSulculus diversicolor (Suzuki and Takagi,J. Mol. Biol.228, 698–700, 1992), the sequence ofNordotis myoglobin showed no significant homology with any other globins, but showed high homology (35% identity) with vertebrate indoleamine 2,3-dioxygenase, a tryptophan degrading enzyme containing heme. The amino acid sequence homology betweenNordotis andSulculus myoglobins was 87%. These results support our previous idea that the abalone myoglobins evolved from a gene for indoleamine dioxygenase, but not from a globin gene, and therefore all of the hemoglobins and myoglobins are not homologous. Thus, abalone myoglobins appear to be a typical case of convergent evolution.

Key words

Hemoglobin myoglobin indoleamine dioxygenase convergent evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dai, W., and Gupta, A. L. (1990).Biochem. Biophys. Res. Commun. 168, 1–8.PubMedGoogle Scholar
  2. Feng, D. F., and Doolittle, R. F. (1987).J. Mol. Evol. 25, 351–360.PubMedGoogle Scholar
  3. Habara-Ohkubo, A., Takikawa, O., and Yoshida, R. (1991).Gene 105, 221–227.PubMedGoogle Scholar
  4. Hirata, F., Ohnishi, T., and Hayaishi, O. (1977).J. Biol. Chem. 252, 4637–4642.PubMedGoogle Scholar
  5. Kadoya, A., Tone, S., Maeda, H., Minatogawa, Y., and Kido, R. (1992).Biochem. Biophys. Res. Commun. 189, 530–536.PubMedGoogle Scholar
  6. Nagai, K., Luisi, B., Shih, D., Miyazaki, G., Imai, K., Poyart, C., De Young, A., Kwiatkowsky, L., Noble, R. W., Lin, S.-H., and Yu, N.-T. (1987).Nature (London) 329, 858–860.Google Scholar
  7. Phillips, S. E. V., and Schoenborn, B. P. (1981).Nature (London) 292, 81–82.Google Scholar
  8. Saiki, R. K., Gelfand, D., Stoffel, S., Scharf, S., Higuchi, R., Horn, G., Mullis, K., and Erlich, H. (1988).Science 239, 487–491.PubMedGoogle Scholar
  9. Shimizu, T., Nomiyama, S., Hirata, F., & Hayaishi, O. (1978).J. Biol. Chem. 253, 4700–4706.PubMedGoogle Scholar
  10. Springer, B. A., Egeberg, K. D., Sligar, S. G., Rohlfs, R. J., Mathews, A. J., and Olson, J. S. (1989).J. Biol. Chem. 264, 3057–3060.PubMedGoogle Scholar
  11. Suzuki, T., and Furukohri, T. (1989).Experientia 45, 998–1002.PubMedGoogle Scholar
  12. Suzuki, T., and Takagi, T. (1992).J. Mol. Biol. 228, 698–700.PubMedGoogle Scholar
  13. Terwillinger, R. C. and Terwilliger, N. B. (1985).Comp. Biochem. Physiol. 81B, 255–261.Google Scholar
  14. Tone, S., Takikawa, O., Habara-Ohkubo, A., Kadoya, A., Yoshida, R., and Kido, R. (1990).Nucl. Acids Res. 18, 367.PubMedGoogle Scholar
  15. Yu, L. P., La Mar, G. N., and Mizukami, H. (1990).Biochemistry 29, 2578–2585.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Tomohiko Suzuki
    • 1
  1. 1.Department of Biology, Faculty of ScienceKochi UniversityKochiJapan

Personalised recommendations