Journal of Protein Chemistry

, Volume 13, Issue 2, pp 177–185 | Cite as

Regulatory role of GDP in the phosphoenzyme formation of guanine nucleotide: Specific forms of succinyl coenzyme a synthetase

  • Hong-Duck Um
  • Claudette Klein


We have previously shown that micromolar concentrations of GDP stimulate the GTP-mediated phosphorylation of p36, theα subunit of succinyl-CoA synthetase (SCS), in lysates prepared fromDictyostelium discoideum. In this study, we report that this phenomenon represents an enhanced catalytic capacity of SCS to form the phosphoenzyme intermediate. Low concentrations of GDP stimulate phosphoenzyme formation by either GTP, or succinyl-CoA and Pi. Under these conditions GDP enhances the apparent rate of phosphoenzyme formation but does not significantly alter the fraction of phosphorylated enzyme. This effect is retained during purification of the protein and is also observed with purified pig heart SCS, indicating that GDP directly alters the enzyme to enhance its rate of phosphorylation. Under these conditions, GDP does not function at the catalytic site, implying an allosteric regulation of SCS.

Key words

GDP succinyl-CoA synthetase phosphoenzyme formation 

Abbreviations used


succinyl-CoA synthetase


inorganic phosphate


nucleotide diphosphate


nucleotide triphosphate


phosphofructokinase A-form; ADP-forming SCS; G-form; GDP-forming SCS


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anschutz, A., Howlett, A., and Klein, C. (1989).Proc. Natl. Acad. Sci. USA 86, 3665–3668.PubMedGoogle Scholar
  2. Anschutz, A., and Klein, C. (1990).J. Prot. Chem. 9, 417–425.Google Scholar
  3. Anschutz, A. L., Um, H.-D., Siegel, N. R., Veron, M., and Klein, C. (1993).Biochim. Biophysica Acta 1162, 40–46.Google Scholar
  4. Ball, D. J., and Nishimura, J. S. (1980).J. Biol. Chem. 255, 10,805–10,812.Google Scholar
  5. Bild, G. S., Janson, C. A., and Boyer, P. D. (1980).J. Biol. Chem. 255, 8109–8115.PubMedGoogle Scholar
  6. Blangy, D., Buck, H., and Monod, J. (1968).J. Mol. Biol. 31, 13–35.PubMedGoogle Scholar
  7. Bridger, W. A., Millen, W. A., and Boyer, P. D. (1968).Biochemistry 7, 3608–3616.PubMedGoogle Scholar
  8. Cha, S., and Parks, R. E., Jr. (1964).J. Biol. Chem. 239, 1961–1967.PubMedGoogle Scholar
  9. Cha, S., and Parks, R. E., Jr. (1964).J. Biol. Chem. 239, 1968–1977.PubMedGoogle Scholar
  10. Evans, P. R., and Hudson, P. J. (1979).Nature (London) 279 500–504.Google Scholar
  11. Evans, P. R., Farrants, G. W., and Hudson, P. J. (1981).Phil. Trans. Roy. Soc. Ser. B 293, 53–62.Google Scholar
  12. Fujitaki, J. M., and Smith, R. A. (1984).Methods Enzymol. 107, 23–36.PubMedGoogle Scholar
  13. Gibson, J., Upper, C. D., and Gunsalus, I. C. (1967).J. Biol. Chem. 242, 2474–2477.PubMedGoogle Scholar
  14. Juliani, M. H., Brusca, J., and Klein, C. (1981).Dev. Biol. 83, 114–121.PubMedGoogle Scholar
  15. Krebs, A., and Bridger, W. A. (1974).Can. J. Biochem. 52, 594–598.PubMedGoogle Scholar
  16. Laemmli, U. K. (1970).Nature (London) 227, 680–685.Google Scholar
  17. Lowry, O. M., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  18. Meier, K., and Klein, C. (1988).Proc. Natl. Acad. Sci. USA 85, 2181–2185.PubMedGoogle Scholar
  19. Nishimura, J. S., and Mitchell, T. (1985).J. Biol. Chem. 260, 2077–2079.PubMedGoogle Scholar
  20. Ramaley, R. F., Bridger, W. A., Moyer, R. W., and Boyer, P. D. (1967).J. Biol. Chem. 242, 4287–4298.PubMedGoogle Scholar
  21. Shirakihara, Y., and Evans, P. R. (1988).J. Mol. Biol. 204, 973–994.PubMedGoogle Scholar
  22. Um, H.-D., and Klein, C. (1991).J. Prot. Chem. 10, 391–401.Google Scholar
  23. Vogel, H. J., and Bridger, W. A. (1982).J. Biol. Chem. 257, 4834–4842.PubMedGoogle Scholar
  24. Wolodko, W. T., Kay, C. M., and Bridger, W. A. (1986).Biochemistry 25, 5420–5425.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Hong-Duck Um
    • 1
  • Claudette Klein
    • 1
  1. 1.Department of Biochemistry and Molecular BiologySt. Louis University School of MedicineSt. Louis

Personalised recommendations