Plant Cell Reports

, Volume 16, Issue 3–4, pp 188–191 | Cite as

A cell suspension ofLinum flavum (L.) in phosphate limited continuous culture

  • André Oostdam
  • Linus H. W. van der Plas
Article

Abstract

A cell suspension ofLinum flavum was grown in phosphate limited continuous culture at two different growth rates. Energy metabolism (respiration), coniferin and lignin production and overall biomass composition were analysed, in order to establish the relations between growth, maintenance and secondary metabolism. The ATP turnover rate was higher in the faster growing cultures, corresponding with a higher energy requirement. The coniferin production was not directly correlated with the growth rate, indicating the possibility of high production at high growth rates. Steady states grown under identical conditions showed different characteristics that may have evolved during pre-culture time.

Key words

coniferin continuous culture Linum flavum respiration 

Abbreviations

μ

growth rate

BHAM

benzohydroxamate

CH

carbohydrates

DW

dry weight

FW

fresh weight

RT

residence times

VBHAM

oxygen uptake in the presence of BHAM

VKCN

oxygen uptake in the presence of KCN

vres

oxygen uptake in the presence of BHAM and KCN

Vtot

uninhibited oxygen uptake

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames BN (1966) In: Neufeld EF, Ginsburg V (eds) Methods in Enzymology vol 8. Academic Press NY, pp 115–118Google Scholar
  2. Bieleski RL, Ferguson IB (1983) In: Läuchli A Bieleski RL (eds) Encyclopedia of Plant Physiology, New Series vol 15 A, Springer, Berlin Heidelberg New York Tokyo, pp 422–445Google Scholar
  3. Berlin J, Bedorf N, Mollenschott C, Wray V, Sasse F, Höfle G (1988) Planta Medica 54: 204–206PubMedGoogle Scholar
  4. Blumenkrantz N, Asboe-Hansen G (1973) Anal. Biochem. 54: 484–489CrossRefPubMedGoogle Scholar
  5. De Gucht LPE, van der Plas LHW (1995) Biotechnol. Bioeng. 47: 42–52CrossRefGoogle Scholar
  6. De Gucht LPE, van der Plas LHW (1996) Biotechnol. Bioeng.in press Google Scholar
  7. Freudenberg K and Niedercorn F (1958) Chem. Ber. 91: 591–597Google Scholar
  8. Gamborg OL, Miller RA, Ojima V (1968) Exp. Cell Res. 50: 151–158CrossRefPubMedGoogle Scholar
  9. Hagendoorn MJM, Traas TP, Boon JJ and van der Plas LHW (1990) J. Plant Physiol. 137: 72–80.Google Scholar
  10. Kurz WGW (1971) Exp. Cell Res. 64: 477–479CrossRefGoogle Scholar
  11. Murashige T, Skoog F (1962) Physiol. Plant. 15: 473–497Google Scholar
  12. Oostdam A, Mol JNM, van der Plas LHW (1993) Plant Cell Rep. 12: 474–477CrossRefGoogle Scholar
  13. Thom M, Komor E (1984) FEBS Lett. 173: 1–4CrossRefGoogle Scholar
  14. Van Gulik WM (1990) Growth kinetics of plant cells in suspension culture. PhD thesis, Technical University Delft.Google Scholar
  15. Van Gulik WM, Ten Hoopen HJG, Heijnen JJ (1993) Biotechnol. Bioeng. 41: 771–780CrossRefGoogle Scholar
  16. Van Uden W, Pras N, Batterman S, Visser JF, Malingré TM (1990) Planta 183: 25–30Google Scholar
  17. Wagner AM, Krab K (1995) Physiol. Plant. 95: 318–325CrossRefGoogle Scholar
  18. Wilson SB, King PJ, Street HE (1970) J. Exp. Bot. 22: 177–207 (1970).Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • André Oostdam
    • 1
  • Linus H. W. van der Plas
    • 2
  1. 1.Department of Physiology and Biochemistry of PlantsVrije UniversiteitAmsterdamThe Netherlands
  2. 2.Department of Plant PhysiologyAgricultural UniversityWageningenThe Netherlands

Personalised recommendations