Skip to main content
Log in

Strongly unique spline approximations with free knots

  • Published:
Constructive Approximation Aims and scope

Abstract

A necessary and a sufficient alternation condition for strongly unique best spline approximations with free knots is given. In the case of simple knots these conditions coincide, and strongly unique best approximations and strongly unique local best approximations are the same. The numerical consequences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Arndt (1974):On the uniqueness of best spline approximations with free knots. J. Approx. Theory,11:118–125.

    Google Scholar 

  2. D. Braess (1971):Chebyshev approximation by spline functions with free knots. Numer. Math.,17:357–366.

    Article  Google Scholar 

  3. L. Cromme (1976):Eine Klass von Verfahren zur Ermittlung bester nichtlinearer Tschebyscheff-Approximationen. Numer. Math.,25:447–459.

    Google Scholar 

  4. R. Hettich, H. Zencke (1982): Numerische Methoden der Approximation und semi-infiniten Optimierung. Stuttgart: Teubner-Verlag.

    Google Scholar 

  5. R. S. Johnson (1960):On monosplines of least deviation. Trans. Amer. Math. Soc.,96:458–477.

    Google Scholar 

  6. G. Nürnberger (1982):A local version of Haar's theorem in approximation theory. Numer. Funct. Anal. Optim.5:21–46.

    Google Scholar 

  7. G. Nürnberger (1985):Best approximation by spline functions: theory and numerical methods. In: Delay Equations, Approximation and Application (G. Meinardus and G. Nürnberger, eds.), ISNM 74. Basel: Birkhäuser-Verlag, 180–212.

    Google Scholar 

  8. O. Nürnberger, M. Sommer (1983):Alternation for best spline approximations. Numer. Math.,41:207–221.

    Google Scholar 

  9. G. Nürnberger, M. Sommer (1983):A Remez type algorithm for spline functions. Numer. Math.,41:117–146.

    Google Scholar 

  10. G. Nürnberger, M. Sommer, H. Strauß (to appear):An algorithm for segment approximation. Numer. Math.

  11. G. Nürnberger, L. L. Schumaker, M. Sommer, H. Strauß (to appear):Approximation by generalized splines. J. Math. Anal. Appl.

  12. J. R. Rice (1969): The Approximation of Functions II. Reading, MA: Addison-Wesley.

    Google Scholar 

  13. R. Schaback (1978):On alternation numbers in nonlinear Chebyshev approximation. J. Approx. Theory,23:379–391.

    Google Scholar 

  14. L. L. Schumaker (1968):Uniform approximation by Chebyshev spline functions II: free knots. SIAM J. Numer. Anal.,5:647–656.

    Google Scholar 

  15. L. L. Schumaker (1981): Spline Functions: Basic Theory. New York: Wiley-Interscience.

    Google Scholar 

  16. H. Strauß (1984):An algorithm for the computation of strict approximations in subspaces of spline functions. J. Approx. Theory,41:329–344.

    Google Scholar 

  17. D. Wulbert (1971):Uniqueness and differential characterization of approximations from manifolds of functions. Amer. J. Math.,93:350–366.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Larry L. Schumaker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nürnberger, G. Strongly unique spline approximations with free knots. Constr. Approx 3, 31–42 (1987). https://doi.org/10.1007/BF01890551

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01890551

Key words and phrases

AMS classification

Navigation