Constructive Approximation

, Volume 6, Issue 3, pp 225–255 | Cite as

Multivariate cardinal interpolation with radial-basis functions

  • M. D. Buhmann
Article

Abstract

For a radial-basis functionϕ∶ℛ→ℛ we consider interpolation on an infinite regular lattice
, tof∶ℛn→ℛ, whereh is the spacing between lattice points and the cardinal function
, satisfiesX(j)=δoj for allj∈ℒn. We prove existence and uniqueness of such cardinal functionsX, and we establish polynomial precision properties ofIh for a class of radial-basis functions which includes\(\varphi (r) = r^{2q + 1} \),\(\varphi (r) = r^{2q} \log r,\varphi (r) = \sqrt {r^2 + c^2 } \), and\(\varphi (r) = 1/\sqrt {r^2 + c^2 } \) whereq∈ℒ+. We also deduce convergence orders ofIhf to sufficiently differentiable functionsf whenh0.

Key words and phrases

Multivariate interpolation Multivariate approximation Radial-basis functions Orders of convergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Abramowitz, I. A. Stegun (1970): Handbook of Mathematical Functions. New York: Dover.Google Scholar
  2. 2.
    M. D. Buhmann (1988):Convergence of univariate quasi-interpolation using multiquadrics. IMA J. Numer. Anal.,8:365–383.Google Scholar
  3. 3.
    M. D.Buhmann (1988): Multivariate Interpolation in Odd-Dimensional Euclidean Spaces Using Multiquadrics. DAMTP NA/6, University of Cambridge.Google Scholar
  4. 4.
    J. Duchon (1977):Splines minimizing rotation-invariant seminorms in Sobolev spaces. In: Constructive Theory of Functions of Several Variables (W. Schempp, K. Zeller, eds.). Berlin: Springer-Verlag, pp. 85–100.Google Scholar
  5. 5.
    R. Franke (1982):Scattered data interpolation: tests of some methods. Math. Comp.,38:181–200.Google Scholar
  6. 6.
    H. Grauert, K. Fritzsche (1974): Einführung in die Funktionentheorie mehrerer Veränderlicher. Heidelberg: Springer-Verlag.Google Scholar
  7. 7.
    I. R. H.Jackson (1987): An order of convergence for some radial basis functions. DAMTP NA/11, University of Cambridge.Google Scholar
  8. 8.
    I. R. H. Jackson (1988):Convergence properties of radial basis functions. Constr. Approx.,4:243–264.Google Scholar
  9. 9.
    I. R. H.Jackson (1988): Radial Basis Function Methods for Multivariable Approximation. Ph.D. Dissertation, University of Cambridge.Google Scholar
  10. 10.
    D. S. Jones (1982): The Theory of Generalised Functions, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
  11. 11.
    W. R.Madych, S. A.Nelson (preprint):Polyharmonic cardinal splines.Google Scholar
  12. 12.
    M. J. D. Powell (1988):Radial basis function approximations to polynomials. In: Numerical Analysis 1987 (D. F. Griffiths, G. A. Watson, eds.). London: Longman, pp. 223–241.Google Scholar
  13. 13.
    W. Rudin (1973): Functional Analysis. London: McGraw-Hill.Google Scholar
  14. 14.
    I. J. Schoenberg (1946):Contributions to the problem of approximation of equidistant data by analytic functions. Quart. Appl. Math.,4:45–99.Google Scholar
  15. 15.
    L. Schwartz (1966): Théorie des Distributions. Paris: Hermann.Google Scholar
  16. 16.
    E. M. Stein, G. Weiss (1971): Introduction to Fourier Analysis on Euclidean Spaces. Princeton: Princeton University Press.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • M. D. Buhmann
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeEngland

Personalised recommendations