Journal of Classification

, Volume 1, Issue 1, pp 7–24 | Cite as

Efficient algorithms for agglomerative hierarchical clustering methods

  • William H. E. Day
  • Herbert Edelsbrunner
Authors Of Articles


Whenevern objects are characterized by a matrix of pairwise dissimilarities, they may be clustered by any of a number of sequential, agglomerative, hierarchical, nonoverlapping (SAHN) clustering methods. These SAHN clustering methods are defined by a paradigmatic algorithm that usually requires 0(n3) time, in the worst case, to cluster the objects. An improved algorithm (Anderberg 1973), while still requiring 0(n3) worst-case time, can reasonably be expected to exhibit 0(n2) expected behavior. By contrast, we describe a SAHN clustering algorithm that requires 0(n2 logn) time in the worst case. When SAHN clustering methods exhibit reasonable space distortion properties, further improvements are possible. We adapt a SAHN clustering algorithm, based on the efficient construction of nearest neighbor chains, to obtain a reasonably general SAHN clustering algorithm that requires in the worst case 0(n2) time and space.

Whenevern objects are characterized byk-tuples of real numbers, they may be clustered by any of a family of centroid SAHN clustering methods. These methods are based on a geometric model in which clusters are represented by points ink-dimensional real space and points being agglomerated are replaced by a single (centroid) point. For this model, we have solved a class of special packing problems involving point-symmetric convex objects and have exploited it to design an efficient centroid clustering algorithm. Specifically, we describe a centroid SAHN clustering algorithm that requires 0(n2) time, in the worst case, for fixedk and for a family of dissimilarity measures including the Manhattan, Euclidean, Chebychev and all other Minkowski metrics.


Algorithm complexity Algorithm design Centroid clustering method Geometric model SAHN clustering method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AHO, A.V., HOPCROFT, J.E., and ULLMAN, J.D. (1974),The Design and Analysis of Computer Algorithms, Reading, Massachusetts: Addison-Wesley.Google Scholar
  2. ANDERBERG, M.R. (1973),Cluster Analysis for Applications, New York: Academic.Google Scholar
  3. BATAGELJ, V. (1981), “Note on Ultrametric Hierarchical Clustering Algorithms,”Psychometrika, 46, 351–352.Google Scholar
  4. BENZECRI, J.P. (1982), “Construction d'une Classification Ascendante Hierarchique par la Recherche en Chaîne des Voisins Réciproques,”Les Cahiers de l'Analyse des Données, VII, 209–218.Google Scholar
  5. BRUYNOOGHE, M. (1978), “Classification Ascendante Hiérarchique des Grands Ensembles de Données: un Algorithme Rapide Fondé sur la Construction des Voisinages Réductibles,”Les Cahiers de l'Analyse des Données, III, 7–33.Google Scholar
  6. CORMACK, R.M. (1971), “A Review of Classification,”Journal of the Royal Statistical Society, Series A, 134, 321–367.Google Scholar
  7. COXETER, H.S.M. (1963), “An Upper Bound for the Number of Equal Nonoverlapping Spheres that can Touch Another of the Same Size,” inProceedings of the Symposium in Pure Mathematics VII, Convexity, ed. V. Klee, Providence, Rhode Island: American Mathematical Society, 53–71.Google Scholar
  8. DEFAYS, D. (1977), “An Efficient Algorithm for a Complete Link Method,”Computer Journal, 20, 364–366.Google Scholar
  9. DUBIEN, J.L., and WARDE, W.D. (1979), “A Mathematical Comparison of the Members of an Infinite Family of Agglomerative Clustering Algorithms,”Canadian Journal of Statistics, 7, 29–38.Google Scholar
  10. EDELSBRUNNER, H., and VAN LEEUWEN, J. (1983), “Multidimensional Data Structures and Algorithms — a Bibliography,” Report F 104, Institute für Informationsverarbeitung, Technische Universität Graz, Graz, Austria.Google Scholar
  11. EVERITT, B. (1980).Cluster Analysis (Second Edition), London: Heinemann.Google Scholar
  12. FLORIAN, A. (1980), “Newtonsche und Hadwigersche Zahlen,” Report 145, Institut für Mathematik, Universität Salzburg, Salzburg, Austria.Google Scholar
  13. GOWER, J.C., and ROSS, G.J.S. (1969), “Minimum Spanning Trees and Single Linkage Cluster Analysis,”Applied Statistics, 18, 54–64.Google Scholar
  14. GROEMER, H. (1961), “Abschätzungen für die Anzahl der konvexen Körper, die einen konvexen Körper berühren,”Monatshefte für Mathematik, 65, 74–81.Google Scholar
  15. GRUNBAUM, B. (1961), “On a Conjecture of H. Hadwiger,”Pacific Journal of Mathematics, 11, 215–219.Google Scholar
  16. HADWIGER, H. (1957), “Uber Treffanzahlen bei translationsgleichen Eikörpern,”Archiv der Mathematik, 8, 212–213.Google Scholar
  17. HADWIGER, H., and DEBRUNNER, H. (1955),Kombinatorische Geometrie in der Ebene, Genève: Monographies de l'Enseignement Mathématique.Google Scholar
  18. HARTIGAN, J.A. (1975),Clustering Algorithms, New York: John Wiley.Google Scholar
  19. HUBERT, L., and SCHULTZ, J. (1975), “Hierarchical Clustering and the Concept of Space Distortion,”British Journal of Mathematical and Statistical Psychology, 28, 121–133.Google Scholar
  20. HWANG, F.K. (1979), “An 0(n log n) Algorithm for Rectilinear Minimal Spanning Tree,”Journal of the Association for Computing Machinery, 26, 177–182.Google Scholar
  21. JARDINE, N., and SIBSON, R. (1971),Mathematical Taxonomy, London: John Wiley.Google Scholar
  22. JOHNSON, S.C. (1967), “Hierarchical Clustering Schemes,”Psychometrika, 32, 241–254.PubMedGoogle Scholar
  23. JUAN, J. (1982), “Programme de Classification Hiérarchique par l'Algorithme de la Recherche en Chaîne des Voisins Réciproques,”Les Cahiers de l'Analyse des Données, VII, 219–225.Google Scholar
  24. LANCE, G.N., and WILLIAMS, W.T. (1966), “A Generalized Sorting Strategy for Computer Classifications,”Nature, 212, 218.Google Scholar
  25. LANCE, G.N., and WILLIAMS, W.T. (1967), “A General Theory of Classificatory Sorting Strategies. 1. Hierarchical Systems,”Computer Journal, 9, 373–380.Google Scholar
  26. MILLIGAN, G.W. (1979), “Ultrametric Hierarchical Clustering Algorithms,”Psychometrika, 44, 343–346.Google Scholar
  27. MURTAGH, F. (1983), “A Survey of Recent Advances in Hierarchical Clustering Algorithms,”Computer Journal, 26, 354–359.Google Scholar
  28. ROHLF, F.J. (1973), “Algorithm 76. Hierarchical Clustering Using the Minimum Spanning Tree,”Computer Journal, 16, 93–95.Google Scholar
  29. ROHLF, F.J. (1977), “Computational Efficiency of Agglomerative Clustering Algorithms,” Report RC 6831, IBM T.J. Watson Research Center, Yorktown Heights, New York.Google Scholar
  30. ROHLF, F.J. (1978), “A Probabilistic Minimum Spanning Tree Algorithm,”Information Processing Letters, 7, 44–48.Google Scholar
  31. ROHLF, F.J. (1982), “Single-link Clustering Algorithms,” inHandbook of Statistics, Vol. 2, eds. P.R. Krishnaiah and L.N. Kanal, Amsterdam and New York: North Holland, 267–284.Google Scholar
  32. ROSS, G.J.S. (1969), “Algorithm AS 15. Single Linkage Cluster Analysis,”Applied Statistics, 18, 106–110.Google Scholar
  33. SHAMOS, M.I., and HOEY, D. (1975), “Closest-point Problems,”Sixteenth Symposium on Foundations of Computer Science, New York: Institute of Electrical and Electronics Engineers, 151–162.Google Scholar
  34. SIBSON, R. (1973), “SLINK: an Optimally Efficient Algorithm for the Single-link Cluster Method,”Computer Journal, 16, 30–34.Google Scholar
  35. SNEATH, P.H.A., and SOKAL, R.R. (1973),Numerical Taxonomy, San Francisco: W.H. Freeman.Google Scholar
  36. WARD, Jr., J.H. (1963), “Hierarchical Grouping to Optimize an Objective Function,”Journal of the American Statistical Association, 58, 236–244.Google Scholar
  37. WEIDE, B. (1977), “A Survey of Analysis Techniques for Discrete Algorithms,”Computing Surveys, 9, 291–313.Google Scholar
  38. WISHART, D. (1969), “256 Note: An Algorithm for Hierarchical Classifications,”Biometrics, 25, 165–170.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • William H. E. Day
    • 1
  • Herbert Edelsbrunner
    • 2
  1. 1.Department of Computer ScienceMemorial University of NewfoundlandSt. John'sCanada
  2. 2.Institute für InformationsverarbeitungTechnische Universität GrazGrazAustria

Personalised recommendations