Constructive Approximation

, Volume 1, Issue 1, pp 333–348 | Cite as

On the bernstein conjecture in approximation theory

  • Richard S. Varga
  • Amos J. Carpenter


WithE2n(|x|) denoting the error of best uniform approximation to |x| by polynomials of degree at most 2n on the interval [−1, +1], the famous Russian mathematician S. Bernstein in 1914 established the existence of a positive constantβ for which lim 2nE2n(|x|)=β.n→∞ Moreover, by means of numerical calculations, Bernstein determined, in the same paper, the following upper and lower bounds forβ: 0.278<β<0.286. Now, the average of these bounds is 0.282, which, as Bernstein noted as a “curious coincidence,” is very close to 1/(2√π)=0.2820947917... This observation has over the years become known as the Bernstein Conjecture: Isβ=1/(2√π)? We show here that the Bernstein conjecture isfalse. In addition, we determine rigorous upper and lower bounds forβ, and by means of the Richardson extrapolation procedure, estimateβ to approximately 50 decimal places.

AMS classification


Key words and phrases

Best uniform approximation Polynomials Chebyshev series Remez algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Bell, S. M. Shah (1969):Oscillating polynomials and approximations to |x|. Publ. of the Ramanujan Inst.1:167–177.Google Scholar
  2. 2.
    S. Bernstein (1914):Sur la meilleure approximation de |x| par des polynomes de degrés donnés. Acta. Math.,37:1–57.Google Scholar
  3. 3.
    R. Bojanic, J. M. Elkins (1975):Bernstein's constant and best approximation on [0, ∞). Publ. de l'Inst. Math., Nouvelle série,18 (32):19–30.Google Scholar
  4. 4.
    Richard P. Brent (1978):A FORTRAN multiple-precision arithmetic package. Assoc. Comput. Mach. Trans. Math. Software,4:57–70.Google Scholar
  5. 5.
    C. Brezinski (1978): Algorithmes d'Accélération de la Convergence. Paris: Éditions Technip.Google Scholar
  6. 6.
    W. J. Cody, A. J. Strecok, H. C. Thacher, Jr. (1973):Chebyshev approximations for the psi function. Math. of Comp.,27:123–127.Google Scholar
  7. 7.
    P. Henrici (1974): Applied and Computational Complex Analysis, vol. 1. New York: John Wiley & Sons.Google Scholar
  8. 8.
    G. Meinardus (1967): Approximations of Functions: Theory and Numerical Methods. New York: Springer-Verlag.Google Scholar
  9. 9.
    E. Ya. Remez (1934):Sur le calcul effectiv des polynômes d'approximation de Tchebichef. C.R. Acad. Sci. Paris,199:337–340.Google Scholar
  10. 10.
    T. J. Rivlin (1969): An Introduction to the Approximation of Functions. Waltham, Massachusetts: Blaisdell Publishing Co.Google Scholar
  11. 11.
    D. A. Salvati (1980): Numerical Computation of Polynomials of Best Uniform Approximation to the Function |x|. Master's Thesis, Ohio State University, 39 pp. Columbus, Ohio.Google Scholar
  12. 12.
    E. T. Whittaker, G. N. Watson (1962): A Course of Modern Analysis, 4th ed. Cambridge: Cambridge University Press.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1985

Authors and Affiliations

  • Richard S. Varga
    • 1
  • Amos J. Carpenter
    • 2
  1. 1.Institute for Computational MathematicsKent State UniversityKent
  2. 2.Institute for Computational MathematicsKent State UniversityKent

Personalised recommendations