A distributivity property in an orthomodular lattice

  • J. H. Bevis


Distributivity Property Orthomodular Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. H. Bevis, Matrices over orthomodular lattices,Glasgow Math. J., to appear (1969).Google Scholar
  2. [2]
    D. J. Foulis, Baer *-semigroups,Proc. Amer. Math. Soc.,11 (1960), pp. 648–654.Google Scholar
  3. [3]
    D. J. Foulis, A note on orthomodular lattices,Portugal. Math.,21 (1962), pp. 65–72.Google Scholar
  4. [4]
    D. J. Foulis,Lecture notes on lattice theory, University of Florida, 1964.Google Scholar
  5. [5]
    S. S. Holland, Jr., A Radon-Nikodym theorem in dimension lattices,Trans. Amer. Math. Soc.,108 (1963), pp. 66–87.Google Scholar
  6. [6]
    S. S. Holland, Distributivity and perspectivity in orthomodular lattices,Trans. Amer. Math. Soc.,112 (1964), pp. 330–343.Google Scholar
  7. [7]
    M. F. Janowitz,Quentifiers and quasi-orthomodular lattices, Wayne State University doctoral dissertation (1963).Google Scholar
  8. [8]
    M. F. Janowitz, A note on normal ideals,J. Sci. Hirosima Univ., Ser. A-I30 (1966), pp. 1–9.Google Scholar
  9. [9]
    M. F. Janowitz, Perspective properties of relatively complemented lattices,J. Natur. Sci. and Math., to appear.Google Scholar
  10. [10]
    M. F. Janowitz, Separation conditions in relatively complemented lattices, to appear.Google Scholar

Copyright information

© Akadémiai Kiadó 1972

Authors and Affiliations

  • J. H. Bevis
    • 1
  1. 1.Georgia State CollegeAtlantaUSA

Personalised recommendations