Foundations of Physics

, Volume 22, Issue 5, pp 669–690 | Cite as

Line shapes in nonlinear spectroscopy

  • Lewis Klein
Part I. Invited Papers Dedicated To Henry Margenan


The shape of the spectral lines of an optically active system interacting with one or more strong radiation fields in the presence of a perturbing bath is studied. A method based on the statistics of the fluctuation of the interaction between the radiator and the perturbing environment (the model Markov microfield theory) is used. This method permits the foundations of line shape theory in modern statistical mechanics to be seen clearly. Multiphoton processes and homogeneous, inhomogeneous, and power broadening mechanisms are included in the analysis. The correlations between radiative and collisional processes which arise in nonlinear spectroscopy are included explicitly. A discussion of the new information that is obtained from these correlations in nonlinear spectroscopy is also presented. Several model systems are presented as illustrative examples of the theory.


Radiation Spectroscopy Spectral Line Active System Statistical Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Margenau and M. Lewis,Rev. Mod. Phys. 31, 569 (1959).Google Scholar
  2. 2.
    H. Griem,Spectral Line Broadening by Plasmas (Academic Press, New York, 1974); P. Berman, inAdvances in Atomic and Molecular Physics, ed. D. Bates and B. Bederson (Academic Press, New York, 1977), Vol. 13, p. 57; S. Rautian and I. Sobelman,Sov. Phys. Usp. 9, 701 (1967).Google Scholar
  3. 3.
    R. Kubo, inFluctuation, Relaxation, and Resonance in Magnetic Systems, ed. D. terHaar (Oliver and Boyd, 1962); R. Zwanzig, inLectures in Theoretical Physics, ed. W. Britten (Interscience, New York, 1961), Vol. III, p. 106; U. Fano,Phys. Rev. 131, 259 (1963).Google Scholar
  4. 4.
    E. Smith, J. Cooper, and C. Vidal,Phys. Rev. 185, 140 (1969); D. Voslamber,Z. Naturforsch. 24a, 1458 (1965), L. Klein,J. Quant. Spectrosc. Radiat. Transfer 9, 199 (1968).Google Scholar
  5. 5.
    A. Ben-Reuven,Adv. Chem. Phys. 33, 235 (1975).Google Scholar
  6. 6.
    A. Omont, E. Smith, and J. Copper,Astrophys. J. 175, 185 (1972); G. Nienhuis,Physica 92C, 409 (1977).Google Scholar
  7. 7.
    D. Voslamber and J.-B. Yelnik,Phys. Rev. Lett. 41, 1233 (1978); K. Burnett, J. Cooper, RT. Ballagh, and E. Smith,Phys. Rev. A22, 2005 (1980); K. Burnett and J. Cooper,Phys. Rev. A22, 2027 and 2044 (1980).Google Scholar
  8. 8.
    P. Berman,Appl. Phys. (Germany) 6, 283 (1975), andPhys. Rep. 43, 101 (1978); L. Klein, M. Giraud, and A. Ben-Reuven,Phys. Rev. 16, 289 (1977); A. Ben-Reuven, J. Jortner, L. Klein, and S. Mukamel,Phys. Rev. A13, 1402 (1976).Google Scholar
  9. 9.
    B. Talin, Y. Botzanowsky, C. Calmes, and L. Klein,J. Phys. B. 16, 2313 (1983).Google Scholar
  10. 10.
    V. P. Kaftandjian and L. Klein,Phys. Lett. 62A, 317 (1977); V. P. Kaftandjian, L. Klein, and W. Hanle,Phys. Lett. 65A, 188 (1978); S. Giraud-Cotton, V. P. Kaftandjian, and L. Klein,Phys. Rev. 32, 2211 and 2223 (1985).Google Scholar
  11. 11.
    A. Ben-Reuven,Phys. Rev. 4, 215 (1971).Google Scholar
  12. 12.
    A. Brissaud and U. Frisch,J. Quant. Spectrosc. Radiat. Transfer 11, 1767 (1971).Google Scholar
  13. 13.
    L. Klein, B. Talin, V. P. Kaftandjian, and R. Stamm, inSpectral Line Shapes, Vol. 3, ed. F. Rostas (W. deGruyter, Berlin, 1985), p. 447.Google Scholar
  14. 14.
    B. Talin, L. Galatry, and L. Klein,J. Chem. Phys. 7, 2789 (1977).Google Scholar
  15. 15.
    B. Talin and L. Klein,Phys. Rev. 26, 2717 (1982).Google Scholar
  16. 16.
    B. Talin, R. Stamm, V. P. Kaftandjian, and L. Klein,Astrophys. J. 322, 804 (1987).Google Scholar
  17. 17.
    E. Smith, B. Talin, and J. Cooper,J. Quant. Spectrosc. Radiat. Transfer 26, 229 (1981).Google Scholar
  18. 18.
    L. Klein, M. Giraud, and A. Ben-Reuven,Phys. Rev. A10, 682 (1974).Google Scholar
  19. 19.
    A. Ben-Reuven,Phys. Rev. A22, 2572 and 2585 (1980).Google Scholar
  20. 20.
    A. Ben-Reuven and L. Klein,Phys. Rev. A4, 753 (1971).Google Scholar
  21. 21.
    P. Resibois and M. deLeener,Classical Kinetic Theory of Fluids (Wiley-Interscience, New York, 1977), Chap. 1.Google Scholar
  22. 22.
    M. Blume,Phys. Rev. 174, 351 (1968).Google Scholar
  23. 23.
    R. Dicke,Phys. Rev. 89, 472 (1953).Google Scholar
  24. 24.
    R. Karplus and J. Schwinger,Phys. Rev. 137, 1020 (1948).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Lewis Klein
    • 1
  1. 1.Department of Physics and AstronomyHoward UniversityWashington, D.C.

Personalised recommendations