Foundations of Physics

, Volume 16, Issue 7, pp 637–649 | Cite as

Barrier penetration and initial values in Kaluza-Klein theories

  • Dieter R. Brill
Part VI. Invited Papers Dedicated To John Archibald Wheeler

Abstract

Topology change is discussed as a barrier penetration process and illustrated by explicit calculations in Witten's Kaluza-Klein bubble geometry. Initial values are given for other bubble geometries, including ones with negative total mass.

Keywords

Total Mass Explicit Calculation Topology Change Penetration Process Barrier Penetration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Wheeler,Geometrodynamics (Academic Press, New York, 1962).Google Scholar
  2. 2.
    R. Geroch,J. Math. Phys. 8, 782 (1967).CrossRefGoogle Scholar
  3. 3.
    G. M. Patton and J. A. Wheeler, “Is Physics Legislated by Cosmogeny?” inQuantum Gravity, An Oxford Symposium, C. J. Isham, R. Penrose, and D. W. Sciama, eds. (Clarendon Press, Oxford, 1975).Google Scholar
  4. 4.
    S. Hawking, “The path-integral approach to quantum gravity,” inGeneral Relativity: An Einstein Centenary Survey, S. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge, 1979).Google Scholar
  5. 5.
    D. Brill and S. Deser,Ann. Phys. 50, 548 (1968); R. Schoen and S. Yau,Comm. Math. Phys. 65, 47 (1979);79, 47 (1981);79, 231 (1981); E. Witten,Comm. Math. Phys. 80, 381 (1981).CrossRefGoogle Scholar
  6. 6.
    E. Witten,Nucl. Phys. B 195, 481 (1982).CrossRefGoogle Scholar
  7. 7.
    U. Gerlach,Phys. Rev. 177, 1929 (1969).CrossRefGoogle Scholar
  8. 8.
    D. McLaughlin,J. Math. Phys. 13, 1099 (1972).CrossRefGoogle Scholar
  9. 9.
    S. Coleman,Phys. Rev. D 15, 2929 (1977); C. Callan and S. Coleman,Phys. Rev. D 16, 1762 (1977).CrossRefGoogle Scholar
  10. 10.
    C. W. Misner and J. A. Wheeler,Ann. Phys. 2, 525 (1957); D. Brill,Ann. Phys. 7, 466 (1959); C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (Freeman, San Francisco, 1973), Chap. 21.CrossRefGoogle Scholar
  11. 11.
    D. Brill and F. Flaherty,Commun. Math. Phys. 50, 157 (1976), Theorem 4.2; D. Brill and F. Flaherty,Ann. Inst. H. Poincaré 28, 335 (1978).CrossRefGoogle Scholar
  12. 12.
    A. Vilenkin,Phys. Rev. D 27, 2848 (1983).CrossRefGoogle Scholar
  13. 13.
    J. A. Wheeler, inBatelle Recontres 1967 Lectures in Mathematics and Physics (W. Benjamin, New York, 1968), pp. 242–307; G. M. Patton and J. A. Wheeler, inQuantum Gravity, C. W. Isham, R. Penrose, and D. Sciama, eds. (Oxford, University Press, Oxford, 1975).Google Scholar
  14. 14.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (Freeman, San Francisco, 1973), Chap. 43.Google Scholar
  15. 15.
    J. York, “The initial value problem and dynamics,” inGravitation Rediation, N. Deruelle and T. Piran, eds. (North-Holland, Amsterdam, 1983).Google Scholar
  16. 16.
    M. Cantor and D. Brill,Compos. Math. 43, 317 (1981).Google Scholar
  17. 17.
    A. Chodos and S. Detweiler,Gen. Relativ. Gravit. 14, 885 (1982).CrossRefGoogle Scholar
  18. 18.
    P. Freund and M. Rubin,Phys. Lett. B. 79, 233 (1980).CrossRefGoogle Scholar
  19. 19.
    R. Young,Phys. Lett. B 142, 149 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Dieter R. Brill
    • 1
  1. 1.Max-Planck Institut für AstrophysikGarchingFederal Republic of Germany

Personalised recommendations