Constructive Approximation

, Volume 5, Issue 1, pp 89–98 | Cite as

An exact formula for the measure dimensions associated with a class of piecewise linear maps

  • J. S. Geronimo
  • D. P. Hardin
Article

Abstract

An exact formula for the various measure dimensions of attractors associated with contracting similitudes is given. An example is constructed showing that for more general affine maps the various measure dimensions are not always equal.

AMS classification

26A 28A 41A 44A 

Key words and phrases

Hausdorff dimension Lyapunov dimension Similitudes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    M. F. Barnsley (1986):Fractal functions and interpolation. Constr. Approx.,2:303–329.Google Scholar
  2. [BD]
    M. F. Barnsley, S. Demko (1985):Iterated function systems and the global construction of fractals. Proc. Roy. Soc. London Ser. A,399:243–275.Google Scholar
  3. [BDEG]
    M. F.Barnsley, S.Demko, J.Elton, J. S.Geronimo (to appear):Invariant measures for Markov processes arising from iterated function systems with place-dependent probabilities. Ann. Inst. H. Poincaré.Google Scholar
  4. [Be]
    T.Bedford (1984): Crinkly Curves, Markov Partitions and Dimensions. Ph.D. Thesis, University of Warwick.Google Scholar
  5. [BEHL]
    M. F. Barnsley, V. Ervin, D. Hardin, J. Lancaster (1986):Solution of an inverse problem for fractals and other sets. Proc. Nat. Acad. Sci. U.S.A.,83:1975–1977.Google Scholar
  6. [DHN]
    S. Demko, L. Hodges, B. Naylor (1985):Construction of fractal objects with iterated function systems. Comput. Graphics,19:271–278.Google Scholar
  7. [DS]
    P. Diaconis, M. Shahshahani (1986):Products of random matrices and computer image generation. Contemp. Math.,50:173–182.Google Scholar
  8. [F]
    K. J. Falconer (1985): The Geometry of Fractal Sets. Cambridge: Cambridge University Press.Google Scholar
  9. [FOY]
    J. D. Farmer, E. Ott, J. A. Yorke (1983):The dimension of chaotic attractors. Physica,70:153–180.Google Scholar
  10. [H]
    J. Hutchinson (1987):Fractals and self-similarity. Indiana Univ. Math. J.,30:731–747.Google Scholar
  11. [L]
    F. Ledrappier (1981):Some relations between dimension and Lyapunov exponents. Comm. Math. Phys.,81:229–238.Google Scholar
  12. [M]
    B. Mandelbrot (1982): The Fractal Geometry of Nature. San Francisco: Freeman.Google Scholar
  13. [Ma]
    J. M. Marstrand (1954):Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. London Math. Soc. (3),4:257–302.Google Scholar
  14. [Mas]
    P.Massopust (1986): Space Curves Generated by Iterated Function Systems. Thesis, Georgia Institute of Technology.Google Scholar
  15. [Mc]
    C. McMullen (1984):The Hausdorff dimension of general Sierpinski carpets. Nazoyo Math. J.,96:1–10.Google Scholar
  16. [P]
    S. Pelikan (1984):Invariant densities for random maps of the interval. Trans. Amer. Math. Soc.,281:813–815.Google Scholar
  17. [Y]
    L. S. Young (1982):Dimension, entropy, and Lyapunov exponents. Ergodic Theory Dynamical Systems,2:109–124.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1989

Authors and Affiliations

  • J. S. Geronimo
    • 1
  • D. P. Hardin
    • 2
  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Mathematics DepartmentVanderbilt UniversityNashvilleUSA

Personalised recommendations